
Using Differentials to Differentiate
Trigonometric and Exponential Functions
Tevian Dray

Tevian Dray (tevian@math.oregonstate.edu) received his
B.S. in mathematics from MIT in 1976, his Ph.D. in
mathematics from Berkeley in 1981, spent several years as
a physics postdoc, and is now a professor of mathematics
at Oregon State University. A Fellow of the American
Physical Society for his early work in general relativity, his
current research interests include the octonions as well as
science education. He directs the Vector Calculus Bridge
Project. (http://www.math.oregonstate.edu/bridge)

Differentiating a polynomial is easy. To differentiate u2 with respect to u, start by
computing

d(u2) = (u + du)2 − u2
= 2u du + du2,

and then dropping the last term, an operation that can be justified in terms of limits.
Differential notation, in general, can be regarded as a shorthand for a formal limit
argument. Still more informally, one can argue that du is small compared to u, so that
the last term can be ignored at the level of approximation needed. After dropping du2

and dividing by du, one obtains the derivative, namely d(u2)/du = 2u. Even if one
regards this process as merely a heuristic procedure, it is a good one, as it always gives
the correct answer for a polynomial. (Physicists are particularly good at knowing what
approximations are appropriate in a given physical context. A physicist might describe
du as being much smaller than the scale imposed by the physical situation, but not so
small that quantum mechanics matters.)

However, this procedure does not suffice for trigonometric functions. For example,
we may write

d(sin θ) = sin(θ + dθ)− sin θ = sin θ (cos(dθ)− 1)+ cos θ sin(dθ),

but to go further we must know something about sin θ and cos θ for small values of θ .
Exponential functions offer a similar challenge, since

d(eβ) = eβ+dβ
− eβ = eβ(edβ

− 1),

and again we need additional information, in this case about eβ for small values of β.
One solution is to use the squeeze lemma to derive the necessary properties of the

trigonometric functions, and the limit definition of e for the exponential function. An
alternative in the latter case is to define the exponential function as the solution of the
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appropriate differential equation (see [1]) or as the inverse of the natural logarithm,
the latter defined through integration. Modern courses often omit these details, rightly
regarded as tedious (and largely irrelevant) by students, replacing them with numerical
estimates of the slopes of the corresponding graphs.

We present here an alternative construction starting from geometric definitions, us-
ing only infinitesimal reasoning, without limits, numerical estimates, differential equa-
tions, or integration.

Circle trigonometry
The basic (circular) trigonometric functions can be defined geometrically in terms of
points (x, y) on the circle of radius r by

cos θ =
x

r
, (1)

sin θ =
y

r
, (2)

where the angle θ is defined as the ratio of the corresponding arc length to the radius.
With this definition, the fundamental identity cos2 θ + sin2 θ = 1 follows from the
definition of a circle.

We want to differentiate these functions. What do we know? We know that (in-
finitesimal) arc length along the circle is given by ds = r dθ , and we also have the (in-
finitesimal) Pythagorean theorem, ds2

= dx2
+ dy2. Furthermore, from x2

+ y2
= r 2,

we obtain

x dx + y dy = 0, (3)

because we can differentiate polynomials. Putting this information together,

r 2 dθ 2
= dx2

+ dy2
= dx2

(
1+

x2

y2

)
= r 2 dx2

y2
,

so that, again using (3),

dθ 2
=

dx2

y2
=

dy2

x2
.

Carefully referring to our circle to check signs, we take the square root and rearrange
terms to obtain

dy = x dθ,

dx = −y dθ.

Finally, inserting (1) and (2) and using the fact that r is constant, we recover the famil-
iar expressions

d sin θ = cos θ dθ,

d cos θ = − sin θ dθ,
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and we have differentiated the basic trigonometric functions using little more than their
geometric definition, the Pythagorean theorem, and the ability to differentiate simple
polynomials. Alternatively, this style of infinitesimal calculation is displayed in the
proof-without-words form in Figure 1; a similar construction was given in [6].

x

r

dy

θ

r
dθ

Figure 1. d(r sin θ) = dy =
x

r
r dθ = r cos θ dθ .

Hyperbola trigonometry
The derivation in the previous section carries over virtually unchanged to hyperbolic
trigonometric functions. However, as the geometric context is less well known, we
repeat the argument with appropriate modifications.

The Lorentzian measure of the squared distance of the point with coordinates (x, y)
from the origin is given by

ρ2
= x2

− y2,

which for the moment we assume to be positive. Curves of constant squared distance
from the origin are hyperbolas, and we first consider the branch with x > 0. If A
is a point on this hyperbola, then we can define the hyperbolic angle β between the
line from the origin to A and the (positive) x-axis to be the ratio of the Lorentzian
length of the arc of the hyperbola between A and the point (ρ, 0) to the “radius” ρ,
where Lorentzian length is obtained by integrating dσ , where dσ 2

=
∣∣dx2
− dy2

∣∣.
(See Figure 2.)

This Lorentzian geometry is known as Minkowski space, and is the geometry of
special relativity [2, 3]. Because hyperbolas in Minkowski space play the role that
circles do in Euclidean geometry, we could also call this geometry hyperbola geome-
try [3].

We define the hyperbolic trigonometric functions in terms of the coordinates (x, y)
of A, that is,

coshβ =
x

ρ
, (4)

sinhβ =
y

ρ
. (5)
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Figure 2. The hyperbolic trigonometric functions defined in terms of hyperbolas of constant
radius in Minkowski space.

This construction is shown in Figure 2, which also contains another hyperbola,
x2
− y2

= −ρ2. By symmetry, the point B on the latter hyperbola has coordinates
(ρ sinhβ, ρ coshβ).

Many of the features of these functions follow immediately from these geomet-
ric definitions. Since the minimum value of x/ρ on the hyperbola is 1, we have
coshβ ≥ 1. As β approaches ±∞, x approaches∞ and y approaches ±∞, agreeing
with the asymptotic behavior of the graphs of coshβ and sinhβ, respectively.

We differentiate these functions using the same technique as before. We choose to
work on the hyperbola y2

− x2
= ρ2, the one in Figure 2 that contains B. What do we

know? We know that (infinitesimal) arc length along the hyperbola is given by

ds = ρ dβ,

but we also have the (infinitesimal, Lorentzian) Pythagorean theorem

ds2
= dx2

− dy2.

Furthermore, from y2
− x2

= ρ2 we obtain

x dx = y dy. (6)

Putting this information together,

ρ2 dβ2
= dx2

− dy2
= dx2

(
1−

x2

y2

)
= ρ2 dx2

y2
,

so that

dβ2
=

dx2

y2
=

dy2

x2
,

where the last equality uses (6). Using Figure 2 to check signs, we take the square root
and rearrange terms to obtain

dy = x dβ,

dx = y dβ.
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Finally, inserting (4) and (5) and using the fact that ρ = constant, we obtain

d sinhβ = coshβ dβ,

d coshβ = sinhβ dβ,

thus differentiating the basic hyperbolic trigonometric functions.

Exponentials (and logarithms)
The hyperbolic functions are usually defined by

coshβ =
eβ + e−β

2
,

and

sinhβ =
eβ − e−β

2
,

and it takes some work (and independent knowledge of the exponential function) to
show directly that our definition is equivalent to this one. We turn this on its head and
instead define exp(β) by

exp(β) = coshβ + sinhβ. (7)
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Figure 3. The geometric definition of exp(β). Points A and B are as in Figure 2, so that the
coordinates of point C are (ρ exp(β), ρ exp(β)).

Our exp(β) has the geometric interpretation shown in Figure 3, where it is impor-
tant to recall that β is a hyperbolic angle, not a Euclidean angle as measured by a
(Euclidean) protractor. We also immediately have

d (exp(β)) = sinhβ dβ + coshβ dβ = exp(β) dβ. (8)

Clearly, since

exp(0) = 1,
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we can conclude that our exp(β) is the same as eβ by invoking uniqueness results for
solutions of differential equations.

It is also possible to show directly that exp(β) is an exponential function, that is, it
satisfies

exp(α + β) = exp(α) exp(β). (9)

One way uses the well-known fact that the derivative of a vector v of constant magni-
tude is perpendicular to that vector. Since the vector to points on a circle from its center
has constant magnitude, it follows that radii are orthogonal to circles. This argument
holds just as well in Minkowski space, and establishes (Lorentzian) orthogonality be-
tween radial lines to our hyperbolas and the tangents to these hyperbolas. Thus, the two
right triangles whose legs are shown by the heavy lines in Figure 4 are congruent in
Minkowski space, from which it is straightforward to derive the standard formulas for
sinh(α + β) and cosh(α + β). These also establish (9). (For further details, see [3].)
A direct geometric verification is also possible, based on the construction in Figure 3,
shown in more detail in Figure 5. Denoting the origin by O , and noting that line AD
is at 45◦, we see that the ratio of the length of OD to that of OA is precisely exp(β).
In this sense, rotation through β (taking A to D) corresponds to stretching by a factor
of exp(β). Composing two such rotations leads directly to (9); the details are left to
the reader.

Having verified the desired properties of the exponential function, it is straightfor-
ward to define logarithms as the inverse of exponentiation, that is, to define log(u) = β
if and only if u = exp(β), and establish that this definition leads to the usual properties
of the natural logarithm.

α

A

B

α

β

A
C

Figure 4. The geometric construction of the hyperbolic addition formulas.
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Figure 5. The geometric verification that exp is exponential.
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Conclusion
It is remarkable that the elementary argument we have presented leads to correct for-
mulas for the derivatives of the trigonometric functions. Furthermore, it is advanta-
geous that our argument models a fundamental aspect of differential calculus, the art
of infinitesimal reasoning. We believe students will find this argument more enlighten-
ing than standard treatments. The differentiation step needed is within their reach; the
use of differentials turns it into a simple, single-variable calculus computation without
partial derivatives or implicit differentiation. In previous work [4, 5], we argued that
the use of differentials provides a coherent introduction not only to single-variable but
also multi-variable calculus.

Unfortunately, the same cannot really be said about our treatment of the exponential
function, since Lorentzian geometry, although interesting, has little place in a calcu-
lus course. Our definition of exp(β), however elegant, is therefore unlikely to be of
much use even to calculus instructors wishing to use differentials. Nonetheless, we
have provided a path to the derivatives of both trigonometric and exponential func-
tions without the use of limits, numerical estimates, solutions of differential equations,
or integration.

The key geometric idea underlying all of the results in this paper is the fact that the
derivative of a vector of constant magnitude is orthogonal to the original vector. The
two basic trigonometric functions (either circular or hyperbolic) are the components of
vectors of constant magnitude. In two dimensions, orthogonal vectors are obtained by
swapping components and inserting an appropriate minus sign. Thus, the derivatives
of each basic trigonometric function must be the other, with an appropriate minus sign
added according to whether one is in Euclidean geometry or Minkowski space.
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Summary. Starting from geometric definitions, we show how differentials can be used to
differentiate trigonometric and exponential functions without limits, numerical estimates, so-
lutions of differential equations, or integration.
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