Part I: Complex Analysis and Linear Algebra

- Do any two problems in Part CA and any two problems in Part LA.
- Your solutions should include all essential mathematical details; please write them up as clearly as possible.
- State explicitly any standard theorems that are needed to justify your reasoning.
- You have three hours to complete Part I of the exam.
- In problems with multiple parts, the individual parts may be weighted differently in grading.

Part CA

1. Find the Laurent expansion $\sum_{n=-\infty}^{\infty} a_n z^n$ of the function
 \[
 f(z) = \frac{1}{(z - 1)(z - 2)}
 \]
 (a) in the region $1 < |z| < 2$;
 (b) in the region $|z| > 2$.

2. Use the Cauchy Integral Formula to prove that if a function $f(z)$ is analytic in a domain D and if z_0 is a point of D, then $f(z)$ has a power series expansion in some open disk centered at z_0. (Do not appeal directly to Taylor’s theorem or Laurent’s theorem.) State explicitly any other standard theorems that are needed to justify your solution.

3. Let $f(z)$ be an analytic function in an open region of \mathbb{C} containing the closed unit disc D. Suppose $f(0) = 1$ and $|f(z)| > 1$ whenever $|z| = 1$. Show that $f(z)$ has a zero in D.
Part LA

1. Suppose $A = \begin{bmatrix} 0 & 2 \\ -3 & 5 \end{bmatrix}$. Find $A^{10,000}$. Justify your answer.

2. Let V be an n-dimensional complex inner product space, T be a linear operator on V, W be a T-invariant subspace of V with $\dim W = m$, and T^* be the adjoint of T.

 (a) Give an example to show that W need not be T^*-invariant. Verify that your example is T-invariant but not T^*-invariant.

 (b) Assume that W is both T and T^*-invariant. Show there exists a basis β for V such that the matrices of T and T^* with respect to β, $[T]_{\beta}$ and $[T^*]_{\beta}$, have the forms

 $[T]_{\beta} = \begin{bmatrix} A & O \\ O & B \end{bmatrix}$ and $[T^*]_{\beta} = \begin{bmatrix} C & O \\ O & D \end{bmatrix}$

 where A and C are $m \times m$ matrices and B and D are $(n-m) \times (n-m)$ matrices.

3. Suppose $n \times n$ complex matrices A and B have the same characteristic polynomial $p(x)$ and the same minimal polynomial $q(x)$. (Of course, $p(x)$ may not be equal to $q(x)$.) Can we conclude that A and B are similar (i.e., $A = CBC^{-1}$ for some invertible $n \times n$-matrix C),

 (a) if $n = 3$?

 (b) if $n = 4$?

 In each part give a proof or a counterexample.
Part II: Real Analysis

- Do any four of the problems in Part II.
- Your solutions should include all essential mathematical details; please write them up as clearly as possible.
- State explicitly any standard theorems that are needed to justify your reasoning.
- You have three hours to complete Part II of the exam.
- In problems with multiple parts, the individual parts may be weighted differently in grading.

1. Let \(f : X \rightarrow X \) be a map from a metric space into itself. A point \(z \in X \) is a fixed point of \(f \) if \(f(z) = z \). Let \(\varepsilon > 0 \). A point \(w \in X \) is an \(\varepsilon \)-fixed point of \(f \) if \(d(f(w), w) < \varepsilon \).

 (a) Prove: If \(X \) is a compact metric space, \(f : X \rightarrow X \) is a continuous function, and if for every \(\varepsilon > 0 \) \(f \) has an \(\varepsilon \)-fixed point, then \(f \) has a fixed point.

 (b) Prove the following statement or give a counter example: If \(X \) is a metric space, \(f : X \rightarrow X \) is a continuous function, and if for every \(\varepsilon > 0 \), \(f \) has an \(\varepsilon \)-fixed point, then \(f \) has a fixed point.

2. Let \(f \in L^p(\mathbb{R}) \) for some \(1 \leq p < \infty \).

 (a) Show that
 \[
 \lim_{x \to \infty} \int_x^{x+1} f(t) \, dt = 0.
 \]

 (b) Show, by way of example, that the assertion of part (a) may fail if \(p = \infty \).
3. Two norms $\| \cdot \|_\alpha$ and $\| \cdot \|_\beta$ on a vector space V are equivalent if there are positive constants m and M such that

$$m \| x \|_\alpha \leq \| x \|_\beta \leq M \| x \|_\alpha$$

for all $x \in V$.

(a) Prove that any two norms on \mathbb{R}^n are equivalent. \textit{Hint.} For any norm $\| \cdot \|$ on \mathbb{R}^n consider the function $f(x) = \| x \|$ on the set

$$\left\{ x = (x_1, \ldots, x_n) : \sum_{i=1}^{n} |x_i| = 1 \right\}.$$

(b) Show that the following norms on $C[0, 1]$, the continuous real-valued functions on $[0, 1]$, are not equivalent:

$$\| f \| = \max_{[0,1]} |f(x)| \quad \text{and} \quad \| f \|_1 = \int_0^1 |f(x)| \, dx$$

4. Let f be an L^1-function on $[0, \infty)$.

(a) Show that if f is uniformly continuous on $[0, \infty)$ then

$$\lim_{t \to \infty} f(t) = 0.$$

(b) Show, by way of example, that the conclusion of part (a) may fail if f is assumed to be continuous (and L^1) but not uniformly continuous on $[0, \infty)$.

4
5. Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a non-negative L^{p_0} function, where $0 < p_0 < \infty$. Show that
\[
\lim_{p \to 0^+} \int_{\mathbb{R}} f^p \, d\nu = \nu \left(\{ x \in X : f(x) \neq 0 \} \right)
\]
where ν is the usual Lebesgue measure on the real line.

Hint: Write
\[
\int_{\mathbb{R}} f^p \, d\nu = \int_{X_0} f^p \, d\nu + \int_{X_1} f^p \, d\nu + \int_{X_2} f^p \, d\nu,
\]
where $X_0 = \{ x \in \mathbb{R} : f(x) = 0 \}$, $X_1 = \{ x \in \mathbb{R} : 0 < f(x) < 1 \}$, and $X_2 = \{ x \in \mathbb{R} : f(x) \geq 1 \}$.

6. Let V be the inner product space of all continuous real-valued functions on $[-1, 1]$ with the inner product
\[
\langle f, g \rangle = \int_{-1}^{1} f(t)g(t) \, dt.
\]

Let W be the subspace of V consisting of odd functions, i.e., $h \in V$ lies in W if and only if $h(-x) = -h(x)$. Find the orthogonal complement W^\perp of W. Justify your answer.