Vrushali A Bokil: Publications Page

Refereed Journal Articles and Peer-Reviewed Conference Proceedings

Submitted

Published/Accepted

[30] V. A. Bokil and P. Sakkaplangkul, Construction and Analysis of Weighted Sequential Splitting FDTD Methods for the 3D Maxwell's Equations , accepted, International Journal of Numerical Analysis and Modeling (IJNAM), 2017.

[29] V. A. Bokil, Y. Cheng, Y. Jiang, and F. Li, Energy Stable Discontinuous Galerkin Methods for Maxwell's Equations in Nonlinear Optical Media , vol 350, pg 420-452, Journal of Computational Physics, Dec 2017 . arxiv version

[28] Frank M. Hilker, Linda J. S. Allen, Vrushali A. Bokil, Cheryl J. Briggs, Zhilan Feng, Karen A. Garrett, Louis J. Gross, Frederic M. Hamelin, Michael J. Jeger, Carrie A. Manore, Alison G. Power, Margaret G. Redinbaugh, Megan A. Rua, and Nik J. Cunniffe. Modelling virus coinfection to inform management of maize lethal necrosis in Kenya. Phytopathology, 2017.

[27] V. A. Bokil, V. Gyrya and D. A. McGregor, A Dispersion Minimized Mimetic Method for Cold Plasma , Proceedings ECCOMAS 2016.

[26] V. A. Bokil , N. L. Gibson, D. A. McGregor and C. R. Woodside, Toward Estimating Current Densities in Magnetohydrodynamic Generators , XXVI IUPAP Conference on Computational Physics (CCP2014), Journal of Physics: Conference Series 640, 012032, 2015

[25] V. A. Bokil , N. L. Gibson, V. Gyrya and D. A. McGregor, Dispersion Reducing Methods for Edge Discretizations of the Vector Wave Equation , 287(2015), 88-109, J. Comp. Phys., 2015.

[24] T. A. Appuhamillage, V. A. Bokil, E. Thomann, E. Waymire and B. Wood, Skew Dispersion and Continuity of Local Time, 156(2), pp 384-394, Journal of Statistical Physics, 2014.

[23] V. A. Bokil and N. L. Gibson, Convergence Analysis of Yee Schemes for Maxwell's Equations in Debye and Lorentz Dispersive Media , 11(4), 657-687, International Journal of Numerical Analysis and Modeling (IJNAM), 2014.
OSU Technical Report version, 2013 .

[22] V. A. Bokil , O. A. Keefer and A. C-Y. Leung, Operator Splitting Methods for Maxwell's Equations in Dispersive Media with Orientational Polarization, 263C (2014), pp. 160-188, Journal of Computational and Applied Mathematics, 2014.
DOI: 10.1016/j.cam.2013.12.008

[21] V. A. Bokil and C. A. Manore, Linking Population Dynamics and Disease Models for Multi-Host Pathogen Systems: Implications for Pathogen and Species Invasion, To appear: Special Issue on Modelling in Infectious Diseases, 21(4), pp-1. 39p. DOI: 10.1142/S0218339013400111, J. Biol. Sys., 2013.

[20] P. L. Zarnetske, T. C. Gouhier, S. D. Hacker, E. W. Seabloom and V. A. Bokil, Indirect effects and facilitation among native and non‐native species promote invasion success along an environmental stress gradient , Journal of Ecology, 101(4), pp 905--915, 2013. Article first published online: 7 JUN 2013 | DOI: 10.1111/1365-2745.12093
Highly Commended for the 2013 Harper Prize

[19] V. A. Bokil and N. L. Gibson, Stability and Dispersion Analysis of High Order FDTD Methods for Maxwell's Equations in Dispersive Media, Contemporary Mathematics, Volume 586, 2013
http://dx.doi.org/10.1090/conm/586/11666

[18] Zarnetske, J. P., R. Haggerty, S. M. Wondzell, V. A. Bokil, and R. González-Pinzón, Coupled transport and reaction kinetics control the nitrate source-sink function of hyporheic zones, Water Resour. Res., 48(11), 2012, doi:10.1029/2012WR011894.
Correction: Coupled transport and reaction kinetics control the nitrate source-sink function of hyporheic zones, Water Resour. Res., 48(12), 2012.

[17] L. J. S. Allen and V. A. Bokil, Stochastic Models for Competing Species with a Shared Pathogen, Mathematical Biosciences and Engineering, 9(3), pp 461-485, 2012

[16] V. A. Bokil and N. L. Gibson, Analysis of Spatial High-Order Finite Difference Methods for Maxwell's Equations in Dispersive Media, IMA Journal of Numerical Analysis, 32(3), 926-956, 2012 (first published online 2011: doi:10.1093/imanum/drr001)

[15] V. A. Bokil and N. L. Gibson, Analysis of High-Order Finite Difference Methods for Maxwell's Equations in Dispersive Media, Extended Abstract, The 10th International Conference on the Mathematical and Numerical Aspects of Waves, WAVES 2011.

[14] T. A. Appuhamillage, V. A. Bokil, E. Thomann, E. Waymire and B. Wood, First Passage Times and Breakthrough Curves Associated with Interfacial Phenomena Extended Abstract, 58th World Congress of the International Statistics Institute, Dublin, Ireland, August 21--26, 2011.

[13] S. M. Moore, C. A. Manore, V. A. Bokil, E. T. Borer and P. R. Hosseini, Spatiotemporal Model of Barley and Cereal Yellow Dwarf Virus Transmission Dynamics with Seasonality and Plant Competition, Bulletin of Mathematical Biology, 73(11), 2707-2730, 2011. (First published online DOI 10.1007/s11538-011-9654-4, 2011.)
Winner of the 2012 Lee Segel Prize

[12] T. A. Appuhamillage, V. A. Bokil, E. Thomann, E. Waymire and B. Wood, Occupation and Local Times for Skew Brownian Motion with Applications to Dispersion Across an Interface, Ann. Appl. Probab., Volume 21, Number 1 (2011), 183-214, 2011
Correction: Occupation and local times for skew Brownian motion with applications to dispersion across an interface, Ann. Appl. Probab., Volume 21, Number 5 (2011), 2050-2051.

[11] T. A. Appuhamillage, V. A. Bokil, E. Thomann, E. Waymire and B. Wood, Solute Transport Across an Interface: A Fickian Theory for Skewness in Breakthrough Curves, Water Resources Research, 46, W07511, 2010. doi:10.1029/2009WR008258

[10] H. T. Banks, V. A. Bokil and N. L. Gibson, Analysis of Stability and Dispersion in a Finite Element Method for Debye and Lorentz Media, Numerical Methods for Partial Differential Equations, 25(4), pp 885-917, July 2009.

[9] H. T. Banks, V. A. Bokil and N. L. Gibson, Parameter Estimation Versus Homogenization Techniques in Time-Domain Characterization of Composite Dielectrics J. Inv. Ill Posed Prob., 15(2), 117-135, 2007.

[8] V. A. Bokil and M. W. Buksas, Comparison of Finite difference and Mixed Finite Element Methods for Perfectly Matched Layer Models, Communications in Computational Physics, 2(4), 806-826, 2007.

[7] H. T. Banks, V. A. Bokil and S. Hu, Monotone Approximation for a Nonlinear Size and Age Structured Epidemic Model, Nonlinear Analysis:Real World Applications, 8(3), 834--852, 2007.

[6] H. T. Banks, V. A. Bokil, S. Hu, A. K. Dhar, R. A. Bullis, C. L. Browdy and F.C.T. Allnutt, Modeling Shrimp Biomass and Viral Infection for Production of Biological Countermeasures, Mathematical Biosciences and Engineering, 3(4), 635--660, Oct 2006.

[5] H. T. Banks, V. A. Bokil, D. Cioranescu, N. L. Gibson, G. Griso, and B. Miara, Homogenization of Periodically Varying Coefficients in Electromagnetic Materials, Journal of Scientific Computing, 28(2-3), 191--221, Aug 2006

[4] H. T. Banks, and V. A. Bokil, A Computational and Statistical Framework for Multidimension Domain Acoustooptic Material Interrogation, Quarterly of Applied Mathematics, Volume LXIII, Number 1, Pages 156-200, March 2005.

[3] V. A. Bokil and R. Glowinski, An Operator Splitting Scheme with a Distributed Lagrange Multiplier Based Fictitious Domain Method for Wave Propagation Problems, in J. Comp. Phys., 205(1), pp 242--268, 2005.

[2] V. A. Bokil and R. Glowinski, A Distributed Lagrange Multiplier Based Fictitious Domain Method for Maxwell's Equations, International Journal of Computational and Numerical Analysis and Applications, 6(3), 203--245, 2004.

[1] V. A. Bokil and R. Glowinski, A fictitious domain method with operator splitting for wave problems in mixed form, Mathematical and numerical aspects of wave propagation WAVES 2003, 437--442, Springer, Berlin, 2003.

PhD Thesis

[TH] V. A. Bokil, Computational Methods for Wave Propagation Problems on Unbounded Domains (8Mb), PhD Thesis, Department of Mathematics, University of Houston, May 2003

Technical Reports

[TR7] V. A. Bokil and A. C-Y. Leung, A Sequential Operator Splitting Method for Electromagnetic Wave Propagation in Dispersive Media, 2011

[TR6] V. A. Bokil and M.-R.Leung, An Analysis of the Coexistence of Three Competing Species with a Shared Pathogen, 2011

[TR5] V. A. Bokil and C. A. Manore, Coexistence of Competing Species with a Directly Transmitted Pathogen, 2010

[TR4] V. A. Bokil and N. L. Gibson, High-Order Staggered Finite Difference Methods for Maxwell's Equations in Dispersive Media, 2010

[TR3] H. T. Banks, V. A. Bokil, and N. L. Gibson Analysis of Stability and Dispersion in a Finite Element Method for Debye and Lorentz Dispersive Media, 2006

[TR2] G. M. Kepler, R. A. Albanese, H. T. Banks, and V. A. Bokil, Reflection of Microwave Pulses from Acoustic Waves: Summary of Experimental and Computational Studies, 2005

[TR1] H. T. Banks and V. A. Bokil , Parameter Identification for Dispersive Dielectrics Using Pulsed Microwave Interrogating Signals and Acoustic Wave Induced Reflections in Two and Three Dimensions, 2004


Montmartre, Paris, France, Sept 2016

Links:

Dr. Bokil's Departmental Homepage
Department of Mathematics Events Department of Mathematics
Oregon State University