Home |
Research | Publications | Advising | Teaching | CV |

## Refereed Journal Articles and Peer-Reviewed Conference Proceedings## Submitted
## Published/Accepted[30]V. A. Bokil and P. Sakkaplangkul, Construction and Analysis of Weighted Sequential Splitting FDTD Methods for the 3D Maxwell's Equations , accepted, International Journal of Numerical Analysis and Modeling (IJNAM), 2017.
[29]
[28] Frank M. Hilker, Linda J. S. Allen,
[27]
[26]
[25]
[24] T. A. Appuhamillage,
[23]
[22]
[21]
[20] P. L. Zarnetske, T. C. Gouhier, S. D. Hacker, E. W. Seabloom and
[19]
[18] Zarnetske, J. P., R. Haggerty, S. M. Wondzell,
[17] L. J. S. Allen and V. A. Bokil and N. L. Gibson, Analysis of Spatial
High-Order Finite Difference Methods for Maxwell's Equations in Dispersive
Media, IMA Journal of Numerical Analysis, 32(3), 926-956, 2012 (first published online 2011: doi:10.1093/imanum/drr001)
[15] V. A. Bokil and N. L. Gibson, Analysis of High-Order Finite Difference Methods for Maxwell's Equations in Dispersive Media, Extended Abstract, The 10th International Conference on the Mathematical and Numerical Aspects of Waves, WAVES 2011.
[14] T. A. Appuhamillage, V. A. Bokil, E. Thomann, E. Waymire and B. Wood,
First Passage Times and Breakthrough Curves Associated with Interfacial Phenomena
Extended Abstract, 58th World Congress of the International Statistics Institute, Dublin, Ireland, August 21--26, 2011.
[13] S. M. Moore, C. A. Manore, V. A. Bokil, E. T. Borer and P. R. Hosseini,
Spatiotemporal Model of Barley and Cereal Yellow Dwarf Virus Transmission
Dynamics with Seasonality and Plant Competition,
Bulletin of Mathematical Biology, 73(11), 2707-2730, 2011. (First published online DOI 10.1007/s11538-011-9654-4, 2011.)Winner of the 2012 Lee Segel Prize
[12] T. A. Appuhamillage, V. A. Bokil, E. Thomann, E. Waymire and B. Wood,
Solute Transport Across an Interface: A Fickian Theory for Skewness in
Breakthrough Curves, Water Resources Research, 46, W07511, 2010. doi:10.1029/2009WR008258 [10] H. T. Banks, V. A. Bokil and N. L. Gibson, Analysis of Stability and Dispersion in a Finite Element Method for Debye and Lorentz
Media, Numerical Methods for Partial Differential Equations,
25(4), pp 885-917, July 2009.
[9] H. T. Banks, V. A. Bokil and N. L. Gibson, Parameter Estimation
Versus Homogenization Techniques in Time-Domain Characterization of
Composite Dielectrics J. Inv. Ill Posed Prob., 15(2), 117-135, 2007.
[8] V. A. Bokil and M. W. Buksas, Comparison of Finite difference and Mixed Finite Element Methods for Perfectly Matched Layer Models, Communications in Computational Physics, 2(4), 806-826, 2007.
[7] H. T. Banks, V. A. Bokil and S. Hu, Monotone Approximation for a Nonlinear Size and Age Structured Epidemic Model, Nonlinear Analysis:Real World Applications, 8(3), 834--852, 2007.
[6] H. T. Banks, V. A. Bokil, S. Hu, A. K. Dhar, R. A. Bullis,
C. L. Browdy and F.C.T. Allnutt, Modeling Shrimp Biomass and Viral
Infection for Production of Biological Countermeasures, Mathematical
Biosciences and Engineering, 3(4), 635--660,
Oct 2006.
[5] H. T. Banks, V. A. Bokil, D. Cioranescu, N. L. Gibson,
G. Griso, and B. Miara,
Homogenization of Periodically Varying Coefficients in Electromagnetic
Materials, Journal of Scientific Computing, 28(2-3), 191--221, Aug 2006
[4] H. T. Banks, and V. A. Bokil, A Computational and Statistical
Framework for Multidimension Domain Acoustooptic Material
Interrogation, Quarterly of Applied Mathematics, Volume LXIII, Number 1, Pages 156-200, March 2005.
[3] V. A. Bokil and R. Glowinski, An Operator Splitting Scheme with a
Distributed Lagrange Multiplier Based Fictitious Domain Method for Wave
Propagation Problems, in J. Comp. Phys., 205(1), pp 242--268, 2005.
[2] V. A. Bokil and R. Glowinski, A Distributed Lagrange Multiplier Based Fictitious Domain Method for Maxwell's Equations, International
Journal of Computational and Numerical Analysis and Applications, 6(3),
203--245, 2004.
[1] V. A. Bokil and R. Glowinski, A fictitious domain method with
operator splitting for wave problems in mixed form,
Mathematical and numerical aspects of wave propagation
WAVES 2003, 437--442, Springer, Berlin, 2003.
## PhD Thesis[TH]V. A. Bokil, Computational Methods for Wave Propagation Problems on Unbounded Domains (8Mb), PhD Thesis, Department of Mathematics, University of Houston, May 2003
## Technical Reports[TR7]V. A. Bokil and A. C-Y. Leung, A Sequential Operator Splitting Method for Electromagnetic Wave Propagation in Dispersive Media, 2011
[TR6]
[TR5]
[TR4]
[TR3] H. T. Banks,
[TR2] G. M. Kepler, R. A. Albanese, H. T. Banks, and
[TR1] H. T. Banks and |
## Montmartre, Paris, France, Sept 2016 Links: Dr. Bokil's Departmental Homepage Department of Mathematics Events Department of Mathematics Oregon State University |