Homework assignment 1*

September 16, 2005

The first problem assumes some knowledge of integration in Banach spaces, a topic we skipped
in class (p. 100 — 105 in the text).

1. Let X and Y be Banach spaces and U open in X. Let {f,} be a sequence of continuously
differentiable functions f, : U — Y and {Df,} the corresponding sequence of derivatives.
Assume that both {f,} and {Df,} converge uniformly to f, and g respectively. ({fn}
converges uniformly to f if for all € > 0, there is some N such that if n > N, then ||f,(z) —
f(@)]| <e, forall x € U).

Prove that

(a)
(b)

The limits f and g are continuous.

f is differentiable and Df = g.
Hint: Use the fact that for all n, there holds that

1
VeeU, 36 >0 : h € Bs(z) = folx +h) — fulz) :/ D f(x + th)hdt,
0

where Bj(x) denotes the open ball of radius ¢ centered at x. This is an application of
Proposition 1.167. Show that this implies that the above equality remains valid if we
replace f,, by f and Df, by g. Conclude that Df = g. Note: Proposition 1.166 may
be useful.

Consider the space of all continuously differentiable functions f : U — X and define
[1f1lx = l|fllo+|IDf|lo, where ||.||o denotes the sup norm. Obviously ||f||1 may be infinite
(Example?). Show that the set of continuously differentiable functions f: U — X with
finite ||.||;-norm is a Banach space.

Note: Use the fact that the space of bounded continuous functions with the sup norm
is a Banach space.

Can you extend this idea to r-times differentiable functions f : U — X for r a positive
integer larger than 17
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2.

The solution to the first part of the second problem will fill the gap in the proof of the
theorem on uniform contraction mappings.

(a)

Let X be a Banach space and T' € L(X, X), that is, T is a bounded linear operator
on X. Assume that ||T|| < p for some p < 1. Prove that I — T is invertible (that is,
I —T is a bijection and (I —T)~* € L(X, X)) with inverse (I —T)~* = >"°° ;7" and
I =T) M <1/(1 = p).

Let H be a Hilbert space and S a closed proper and nonempty subspace of H. It is
well-known that every h € H can be uniquely decomposed as h = hy + ho, where hy € S
and hy € S*.

Consider the mapping P : H — S, defined by Ph = hy for all h € H. Show that
P € L(H, H) and calculate ||P]|.

Consider now the equation Pz = x + b, where b € H \ St is given. Note that this
equation has no solution. Modify the equation to Tz = x + b where T := Al o P where
A is a parameter taking values in the interval (0, 1). Show that this equation does have
a unique solution and determine that solution.

Remark: The modified equation is relevant for the following reason. For every € > 0,
thereis a A € (0,1) so that ||T'— P|| < e. We can therefore approximate P by some T as
closely as we want. Consequently, we can replace a nonsolvable equation by a solvable
equation, which approximates the former as closely as we like.



The third problem offers an alternative -and more classical- proof for the property that solu-
tions of ODE’s depend continuously on initial conditions. This proof is based on Gronwall’s
lemma, a result which is of interest of its own, as it is a powerful tool in the theory of ODE’s.

3. (a)

Gronwall’s lemma.

Let a < b be real numbers and suppose that ¢ : [a,b] — [0,00) is continuous. Assume
that ¢y and ¢, are nonnegative real numbers, and that

o(t) <c1 + 02/ o(s)ds, t € [a,b].

Prove that
o) <y e2(t=a) ¢ ¢ [a,b].
Hint: Prove the lemma first for the case ¢; > 0.

Let f : JxU — R™ where J is open in R and U is open in R"™, be continuously
differentiable and Lipschitz with respect to its second variable. That is, there is some
K > 0 such that for all pairs (¢,21) and (¢,22) in J x U,

|f(t, ) — f(t, 22)| < K|z1 — 22].
Suppose that the IVP’s
&= f(t,z), z(to) = xo,
and
T = f(t7.'13), .Z'(t()) = Yo,

have solutions z(¢) and y(t), both defined on a common interval J* C J, with to € J*.
Prove that
[2(t) = y(t)] < |zo — yol X170l 1 € 7.



