
Homework assignment 1∗

September 16, 2005

The first problem assumes some knowledge of integration in Banach spaces, a topic we skipped
in class (p. 100− 105 in the text).

1. Let X and Y be Banach spaces and U open in X. Let {fn} be a sequence of continuously
differentiable functions fn : U → Y and {Dfn} the corresponding sequence of derivatives.
Assume that both {fn} and {Dfn} converge uniformly to f , and g respectively. ({fn}
converges uniformly to f if for all ε > 0, there is some N such that if n > N , then ||fn(x)−
f(x)|| < ε, for all x ∈ U).

Prove that

(a) The limits f and g are continuous.

(b) f is differentiable and Df = g.

Hint: Use the fact that for all n, there holds that

∀x ∈ U, ∃δ > 0 : h ∈ Bδ(x)⇒ fn(x+ h)− fn(x) =

∫ 1

0

Dfn(x+ th)hdt,

where Bδ(x) denotes the open ball of radius δ centered at x. This is an application of
Proposition 1.167. Show that this implies that the above equality remains valid if we
replace fn by f and Dfn by g. Conclude that Df = g. Note: Proposition 1.166 may
be useful.

(c) Consider the space of all continuously differentiable functions f : U → X and define
||f ||1 = ||f ||0+||Df ||0, where ||.||0 denotes the sup norm. Obviously ||f ||1 may be infinite
(Example?). Show that the set of continuously differentiable functions f : U → X with
finite ||.||1-norm is a Banach space.

Note: Use the fact that the space of bounded continuous functions with the sup norm
is a Banach space.

Can you extend this idea to r-times differentiable functions f : U → X for r a positive
integer larger than 1?
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The solution to the first part of the second problem will fill the gap in the proof of the
theorem on uniform contraction mappings.

2. (a) Let X be a Banach space and T ∈ L(X,X), that is, T is a bounded linear operator
on X. Assume that ||T || ≤ µ for some µ < 1. Prove that I − T is invertible (that is,
I − T is a bijection and (I − T )−1 ∈ L(X,X)) with inverse (I − T )−1 =

∑∞
n=0 T

n and
||(I − T )−1|| ≤ 1/(1− µ).

(b) Let H be a Hilbert space and S a closed proper and nonempty subspace of H. It is
well-known that every h ∈ H can be uniquely decomposed as h = h1+h2, where h1 ∈ S
and h2 ∈ S⊥.

Consider the mapping P : H → S, defined by Ph = h1 for all h ∈ H. Show that
P ∈ L(H,H) and calculate ||P ||.

Consider now the equation Px = x + b, where b ∈ H \ S⊥ is given. Note that this
equation has no solution. Modify the equation to Tx = x+ b where T := λI ◦ P where
λ is a parameter taking values in the interval (0, 1). Show that this equation does have
a unique solution and determine that solution.

Remark: The modified equation is relevant for the following reason. For every ε > 0,
there is a λ ∈ (0, 1) so that ||T −P || < ε. We can therefore approximate P by some T as
closely as we want. Consequently, we can replace a nonsolvable equation by a solvable
equation, which approximates the former as closely as we like.
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The third problem offers an alternative -and more classical- proof for the property that solu-
tions of ODE’s depend continuously on initial conditions. This proof is based on Gronwall’s
lemma, a result which is of interest of its own, as it is a powerful tool in the theory of ODE’s.

3. (a) Gronwall’s lemma.

Let a < b be real numbers and suppose that φ : [a, b] → [0,∞) is continuous. Assume
that c1 and c2 are nonnegative real numbers, and that

φ(t) ≤ c1 + c2

∫ t

a

φ(s)ds, t ∈ [a, b].

Prove that
φ(t) ≤ c1 e

c2(t−a), t ∈ [a, b].

Hint: Prove the lemma first for the case c1 > 0.

(b) Let f : J × U → R
n, where J is open in R and U is open in R

n, be continuously
differentiable and Lipschitz with respect to its second variable. That is, there is some
K > 0 such that for all pairs (t, x1) and (t, x2) in J × U ,

|f(t, x1)− f(t, x2)| ≤ K|x1 − x2|.

Suppose that the IVP’s
ẋ = f(t, x), x(t0) = x0,

and
ẋ = f(t, x), x(t0) = y0,

have solutions x(t) and y(t), both defined on a common interval J ∗ ⊂ J , with t0 ∈ J∗.
Prove that

|x(t)− y(t)| ≤ |x0 − y0| e
K|t−t0|, t ∈ J∗.
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