Homework assignment 1^*

September 16, 2005

The first problem assumes some knowledge of integration in Banach spaces, a topic we skipped in class (p. 100 - 105 in the text).

1. Let X and Y be Banach spaces and U open in X. Let $\{f_n\}$ be a sequence of continuously differentiable functions $f_n : U \to Y$ and $\{Df_n\}$ the corresponding sequence of derivatives. Assume that both $\{f_n\}$ and $\{Df_n\}$ converge uniformly to f, and g respectively. $(\{f_n\}$ converges uniformly to f if for all $\epsilon > 0$, there is some N such that if n > N, then $||f_n(x) - f(x)|| < \epsilon$, for all $x \in U$).

Prove that

- (a) The limits f and g are continuous.
- (b) f is differentiable and Df = g.Hint: Use the fact that for all n, there holds that

$$\forall x \in U, \ \exists \delta > 0 : \ h \in B_{\delta}(x) \Rightarrow f_n(x+h) - f_n(x) = \int_0^1 Df_n(x+th)hdt,$$

where $B_{\delta}(x)$ denotes the open ball of radius δ centered at x. This is an application of Proposition 1.167. Show that this implies that the above equality remains valid if we replace f_n by f and Df_n by g. Conclude that Df = g. Note: Proposition 1.166 may be useful.

(c) Consider the space of all continuously differentiable functions $f : U \to X$ and define $||f||_1 = ||f||_0 + ||Df||_0$, where $||.||_0$ denotes the sup norm. Obviously $||f||_1$ may be infinite (Example?). Show that the set of continuously differentiable functions $f : U \to X$ with *finite* $||.||_1$ -norm is a Banach space.

Note: Use the fact that the space of bounded continuous functions with the sup norm is a Banach space.

Can you extend this idea to r-times differentiable functions $f: U \to X$ for r a positive integer larger than 1?

^{*}MAP 6327; Instructor: Patrick De Leenheer.

The solution to the first part of the second problem will fill the gap in the proof of the theorem on uniform contraction mappings.

- 2. (a) Let X be a Banach space and $T \in L(X, X)$, that is, T is a bounded linear operator on X. Assume that $||T|| \leq \mu$ for some $\mu < 1$. Prove that I - T is invertible (that is, I - T is a bijection and $(I - T)^{-1} \in L(X, X)$) with inverse $(I - T)^{-1} = \sum_{n=0}^{\infty} T^n$ and $||(I - T)^{-1}|| \leq 1/(1 - \mu)$.
 - (b) Let H be a Hilbert space and S a closed proper and nonempty subspace of H. It is well-known that every $h \in H$ can be uniquely decomposed as $h = h_1 + h_2$, where $h_1 \in S$ and $h_2 \in S^{\perp}$.

Consider the mapping $P : H \to S$, defined by $Ph = h_1$ for all $h \in H$. Show that $P \in L(H, H)$ and calculate ||P||.

Consider now the equation Px = x + b, where $b \in H \setminus S^{\perp}$ is given. Note that this equation has no solution. Modify the equation to Tx = x + b where $T := \lambda I \circ P$ where λ is a parameter taking values in the interval (0, 1). Show that this equation does have a unique solution and determine that solution.

Remark: The modified equation is relevant for the following reason. For every $\epsilon > 0$, there is a $\lambda \in (0, 1)$ so that $||T - P|| < \epsilon$. We can therefore approximate P by some T as closely as we want. Consequently, we can replace a nonsolvable equation by a solvable equation, which approximates the former as closely as we like.

The third problem offers an alternative -and more classical- proof for the property that solutions of ODE's depend continuously on initial conditions. This proof is based on Gronwall's lemma, a result which is of interest of its own, as it is a powerful tool in the theory of ODE's.

3. (a) Gronwall's lemma.

Let a < b be real numbers and suppose that $\phi : [a, b] \to [0, \infty)$ is continuous. Assume that c_1 and c_2 are nonnegative real numbers, and that

$$\phi(t) \le c_1 + c_2 \int_a^t \phi(s) ds, \ t \in [a, b].$$

Prove that

$$\phi(t) \le c_1 e^{c_2(t-a)}, \ t \in [a, b].$$

Hint: Prove the lemma first for the case $c_1 > 0$.

(b) Let $f : J \times U \to \mathbb{R}^n$, where J is open in \mathbb{R} and U is open in \mathbb{R}^n , be continuously differentiable and Lipschitz with respect to its second variable. That is, there is some K > 0 such that for all pairs (t, x_1) and (t, x_2) in $J \times U$,

$$|f(t, x_1) - f(t, x_2)| \le K|x_1 - x_2|.$$

Suppose that the IVP's

$$\dot{x} = f(t, x), \ x(t_0) = x_0,$$

and

$$\dot{x} = f(t, x), \ x(t_0) = y_0,$$

have solutions x(t) and y(t), both defined on a common interval $J^* \subset J$, with $t_0 \in J^*$. Prove that

$$|x(t) - y(t)| \le |x_0 - y_0| e^{K|t - t_0|}, \ t \in J^*.$$