Answers practice exam I: MAP 4305*

September 16, 2007.

Name:

Student ID:

This is a closed book exam and the use of calculators is not allowed.
1.

$$
A^{231}=T D^{231} T^{-1}, \quad T=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right), \quad D^{231}=\left(\begin{array}{cc}
(-1)^{231} & 0 \\
0 & 3^{231}
\end{array}\right), \quad T^{-1}=\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)
$$

System is unstable.
2.

$$
P=\left(\begin{array}{cc}
0.5 & 0 \\
0.5 & 1
\end{array}\right), \quad \text { Pagerank }=\binom{0}{1}
$$

3. Since $m(t)=x_{1}(t) y_{2}(t)-x_{2}(t) y_{1}(t)$, it follows that

$$
\dot{m}(t)=\dot{x}_{1}(t) y_{2}(t)+x_{1}(t) \dot{y}_{2}(t)-\dot{x}_{2}(t) y_{1}(t)-x_{2}(t) \dot{y}_{1}(t)
$$

Using the fact that

$$
\binom{x_{1}(t)}{x_{2}(t)} \text { and }\binom{y_{1}(t)}{y_{2}(t)}
$$

are solutions of the system, we can simplify this to:

$$
\dot{m}(t)=(a+d)\left(x_{1}(t) y_{2}(t)-x_{2}(t) y_{1}(t)\right)=(a+d) m(t)
$$

Solve this first order differential equation like you were taught in MAP2302, and you get

$$
m(t)=\mathrm{e}^{(a+d) t} m(0)
$$

4.

$$
x(t)=X(t) c, \quad X(t)=\left(\begin{array}{cc}
\mathrm{e}^{-t} & \mathrm{e}^{2 t} \\
0 & 3 \mathrm{e}^{2 t}
\end{array}\right), \quad c=\binom{\mathrm{e}-\frac{2}{3} \mathrm{e}^{-3}}{\frac{2}{3} \mathrm{e}^{-2}}
$$

