Extra credit problem*

Due date: Anytime before December 1st, 2007

The Legendre polynomials are coefficients of z^{n} in a Taylor series expension with respect to z of a certain function $f(x, z)$:

$$
f(x, z)=\sum_{n=0}^{\infty} P_{n}(x) z^{n}, \quad|x|,|z|<1 .
$$

This function is called the generating function for the Legendre polynomials.
The purpose of this problem is to show that this function is:

$$
f(x, z)=\frac{1}{\sqrt{1-2 x z+z^{2}}}
$$

To show this, you should only use the following recurrence relation that exists between Legendre polynomials (no need to prove this recurrence relation):

$$
(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x), \quad n=0,1, \ldots
$$

and the fact that $P_{0}(x)=1$.
Follow the procedure outlined in problem 35 of section 8.8.
Practical use: To write down the Legendre polynomials explicitely without memorizing them, it suffices to expand the function $f(x, z)$ in a Taylor series with respect to z (while fixing x). But how to memorize $f(x, z)$? Here's a graphical way with an interesting physical interpretation.

Let an electrical charge q be located at a point with polar coordinates (r, θ) (here, θ is the angle between the radius and the y-axis) with $r<1$. In physics one shows that the potential at the point with polar coordinates $(1,0)$ on the y-axis is proportional to $1 / r^{\prime}$ where r^{\prime} is the distance between this point and the point where the charge is:

$$
\text { potential } \sim \frac{1}{r^{\prime}}
$$

[^0]

Now by the law of cosines:

$$
\left(r^{\prime}\right)^{2}=1+r^{2}-2 r \cos (\theta)
$$

and thus the potential is proportional to:

$$
\frac{1}{\sqrt{1+r^{2}-2 r \cos (\theta)}}
$$

which is exactly $f(\cos (\theta), r)$.

[^0]: *MAP 4305; Instructor: Patrick De Leenheer.

