Homework assignment 2*

Due date: Wednesday October 10, 2007

1. Let v be a nonzero vector in \mathbb{R}^{3} and consider the linear system

$$
\dot{x}=v \times x
$$

where \times stand for cross product (see your old calc book in case you forgot). This equation describes the motion of a rigid body rotating around an axis with direction given by the vector v.
(a) Write the system in the usual form $\dot{x}=A x$, and find the general solution.
(b) Is the system stable, asymptotically stable or unstable?
2. In class we discussed a bioreactor model with constant input nutrient concentration S^{0} (we actually set $S^{0}=1$) and variable dilution rate $D>0$. In this problem, we do things the other way round: We will set $D=1$ and let $S^{0}>0$ be variable. The resulting equations are:

$$
\begin{aligned}
\dot{S} & =S^{0}-S-S x \\
\dot{x} & =x(S-1)
\end{aligned}
$$

(a) Perform phase plane analysis like we did in class, by determining the nullclines, all equilibria and the direction of the vector field in the various regions of the non-negative quadrant of \mathbb{R}^{2} (use NW,SW etc arrows).
Based on the resulting sketch, what do you think happens to solutions when $t \rightarrow \infty$?
(b) Linearize the system at the equilibria and discuss the nature of the linearization (stable node, center etc).
3. Consider

$$
\begin{aligned}
\dot{x} & =-y+d x\left(x^{2}+y^{2}\right) \\
\dot{y} & =x+d y\left(x^{2}+y^{2}\right)
\end{aligned}
$$

where d is a real parameter. Determine stability of the equilibrium at $(0,0)$ in terms of d. (Hint: Use polar coordinates.)
4. Determine stability of the zero solution of the following equations:

- $\ddot{x}+\dot{x}+\sin x=0$.
- $\ddot{x}+\dot{x} \cos x+\sin x=0$.

Note that these are problems $12.5 \# 13$ and \# 14 from our text. Ignore the hint given there, and instead try the following function:

$$
V(x, y)=2 \sin ^{2}\left(\frac{x}{2}\right)+\frac{y^{2}}{2}
$$

[^0]
[^0]: *MAP 4305; Instructor: Patrick De Leenheer.

