Homework assignment 3^{*}

Due date: Friday November 9, 2007

1. Consider the following model of a bioreactor with two species with concentrations x and y :

$$
\begin{aligned}
\dot{x} & =x(f(1-x-y)-1) \\
\dot{y} & =y(g(1-x-y)-1)
\end{aligned}
$$

where $(x, y) \in T=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0, y>0, x+y<1\right\}$. The functions f and g are differentiable functions with $f(0)=g(0)=0$ with $f^{\prime}, g^{\prime}>0$. Show that this system has no non-trivial periodic solutions in T.
2. In class we discussed the van der Pol oscillator which we showed could be written as follows:

$$
\begin{aligned}
\dot{x} & =x+y-x^{3} / 3 \\
\dot{y} & =-x
\end{aligned}
$$

We showed that the van der Pol oscillator has a nontrivial periodic solution in a certain annular region that did not contain the origin. We did not completely prove that this region is a trapping region, and the purpose of this problem is to fill the gap by doing the following: Prove that the polygonal region R depicted below is a trapping region.
3. Find the first three terms of two linearly independent solutions of

$$
2 x(x-1) y^{\prime \prime}+3(x-1) y^{\prime}-y=0, \quad x>0
$$

4. Consider Laguerre's equation:

$$
x y^{\prime \prime}+(1-x) y^{\prime}+n y=0,
$$

where n is a nonnegative integer.
Show that for every n, this equation has a polynomial solution $L_{n}(x)$ and determine L_{0}, L_{1}, L_{2} and L_{3} (This is problem 24 from section 8.7 in our text).
5. Do problem 22 of section 8.7 in our text.

[^0]

[^0]: *MAP 4305; Instructor: Patrick De Leenheer.

