## Homework assignment 4*

Due date: Monday December 3, 2007

1. Buckling of a tower See figure 8.16 on p. 501 in the text.

Consider the following Cauchy-Euler equation ${ }^{1}$ which describes the deflection $y(x)$ from the vertical in terms of the height $x$ measured from the top of the untruncated tower:

$$
\begin{aligned}
x^{2} y^{\prime \prime}+\frac{P a^{2}}{E I} y & =0, x \in(a, a+L) \\
y(a) & =0 \\
y^{\prime}(a+L) & =0
\end{aligned}
$$

The top of the tower corresponds to $x=a$ ( $a$ is the part of the tower that is truncated) and the ground corresponds to $x=a+L$, so the height of the tower is $L$. The positive parameters are as follows: $P$ for the vertical load, $I$ for the moment of inertia, $E$ for the modulus of elasticity.
Under certain conditions -in particular when the load is high enough- the tower may buckle and the purpose of this problem is to determine when this will happen.
By definition, buckling occurs if the above boundary value problem has a nontrivial solution $(y(x) \neq 0)$.
(a) Show that if $P \leq E I /\left(4 a^{2}\right)$, then there is no nontrivial solution which implies that no buckling occurs. Thus, for small enough loads there is no buckling.
(b) Assume henceforth that $P>E I /\left(4 a^{2}\right)$. In that case there may be a nontrivial periodic solution as we will discover soon. First show that the first boundary condition implies that a nontrivial solution must be of the form:

$$
y(x)=c \sqrt{x} \sin (\beta \ln (x / a))
$$

where $c$ is a constant to be determined later and

$$
\beta=\sqrt{\frac{P a^{2}}{E I}-\frac{1}{4}}
$$

is a positive constant depending on the load and various parameters. The second boundary condition implies that:

$$
c(\tan (\alpha \beta)+2 \beta)=0
$$

where

$$
\alpha=\ln \left(\frac{a+L}{a}\right)
$$

This implies that either $c=0$ (in which case no buckling occurs), or that

$$
\tan (\alpha \beta)=-2 \beta
$$

In terms of $\beta$, graph the above tangent function and linear function, and show that they intersect infinitely many times for $\beta>0$. For each $\beta$ at which these graphs intersect (don't intersect), buckling occurs (does not occur)

[^0](c) Show that the first time the above graphs intersect happens at some critical value of $\beta$ which we denote as $\beta_{c}>0$, and show that $\beta_{c}$ belongs to the interval $\left(\beta_{0}, \beta_{1}\right)$, where
$$
\beta_{0}=\frac{\pi}{2 \alpha}, \quad \beta_{1}=\frac{\pi}{\alpha}
$$

Express the critical load $P_{c}$, which is the minimal load for which buckling occurs, in terms of $\beta_{c}$.
2. Determine all real eigenvalues and eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(\pi)-a y^{\prime}(\pi)=0
$$

for all possible values of the positive parameter $a>0$.
3. Consider the linear operator

$$
L[y]=y^{(4)}
$$

defined on the set of functions having continuous derivatives up to order 4 , that satisfy the following boundary conditions:

$$
y(a)=y^{\prime}(a)=y(b)=y^{\prime}(b)=0
$$

Show that $L$ is self-adjoint, ie that for all $y_{1}$ and $y_{2}$ in the domain of $L$, we have that:

$$
\left(y_{1}, L\left[y_{2}\right]\right)=\left(L\left[y_{1}\right], y_{2}\right)
$$

Use this to prove that eigenfunctions of the problem:

$$
L[y]+\lambda y=0, \quad y(a)=y^{\prime}(a)=y(b)=y^{\prime}(b)=0
$$

corresponding to distinct eigenvalues are orthogonal, ie that

$$
\left(y_{1}, y_{2}\right)=0
$$

whenever $y_{1}$ and $y_{2}$ are eigenfunctions corresponding to distinct eigenvalues.
4. The following equation describes the displacement of an elastic beam which is clamped on both ends $x=0$ and $x=1$ :

$$
y^{(4)}+\lambda y=0, \quad x \in(0,1), \quad y(0)=y^{\prime}(0)=y(1)=y^{\prime}(1)=0 .
$$

It can be shown (no need to do this) that the eigenvalues $\lambda$ are non-positive. Determine all eigenvalues and eigenfunctions.


[^0]:    *MAP 4305; Instructor: Patrick De Leenheer.
    ${ }^{1}$ Here, it is more convenient to assume that solutions have the form $y(x)=\left(\frac{x}{a}\right)^{r}$ for values $r$ satisfying the indicial equation, instead of $y(x)=x^{r}$.

