Lemma used to prove Rodrigues's formula 1*

November 7, 2007

We showed that $P_{n}(x)$, the Legendre polynomial of degree n, satisfies Rodrigues's formula:

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(\left(x^{2}-1\right)^{n}\right), \quad n=0,1,2, \ldots
$$

provided the following Lemma is proved.

Lemma

The polynomial $p_{n}(x)=\frac{d^{n}}{d x^{n}}\left(\left(x^{2}-1\right)^{n}\right)(n=1,2, \ldots)$ is orthogonal to any polynomial of degree less than n.

Proof. Let $q(x)$ be a polynomial of degree less than n and consider.

$$
\int_{-1}^{1} \frac{d^{n}}{d x^{n}}\left(\left(x^{2}-1\right)^{n}\right) q(x) d x
$$

We need to show that this integral is 0 for all $n=1,2, \ldots$
Integrating by parts once yields:

$$
\left.\frac{d^{n-1}}{d x^{n-1}}\left(\left(x^{2}-1\right)^{n}\right) q(x)\right|_{x=-1} ^{x=1}-\int_{-1}^{1} \frac{d^{n-1}}{d x^{n-1}}\left(\left(x^{2}-1\right)^{n}\right) q^{\prime}(x) d x
$$

Repeating this several times (in total $n-1$ times) we get that this integral equals:

$$
\begin{aligned}
\left.\frac{d^{n-1}}{d x^{n-1}}\left(\left(x^{2}-1\right)^{n}\right) q(x)\right|_{x=-1} ^{x=1} & - \\
\left.\frac{d^{n-2}}{d x^{n-2}}\left(\left(x^{2}-1\right)^{n}\right) q^{\prime}(x)\right|_{x=-1} ^{x=1} & + \\
\left.\frac{d^{n-3}}{d x^{n-3}}\left(\left(x^{2}-1\right)^{n}\right) q^{\prime \prime}(x)\right|_{x=-1} ^{x=1} \quad & - \\
+\left.(-1)^{n-1} \frac{d^{0}}{d x^{0}}\left(\left(x^{2}-1\right)^{n}\right) q^{n-1}(x)\right|_{x=-1} ^{x=1} &
\end{aligned}
$$

There are only a finite number of terms because $q^{(n)}(x)=0$ (recall that q is a polynomial of degree less than n).

We write this more compactly:

$$
\left.\sum_{k=0}^{n-1}(-1)^{k} \frac{d^{n-1-k}}{d x^{n-1-k}}\left(\left(x^{2}-1\right)^{n}\right) q^{(k)}(x)\right|_{x=-1} ^{x=1}
$$

Notice that we'll be done if we can prove the following:

$$
\left.\frac{d^{j}}{d x^{j}}\left(\left(x^{2}-1\right)^{n}\right)\right|_{x=-1} ^{x=1}=0, \text { for all } n=1,2, \ldots \text { and } j=0,1, \ldots, n-1
$$

The proof is by induction on n. The assertion is immediate if $n=1$. So let's assume the assertion is true for n, and try to show it is true for $n+1$. That is, we try to show that:

$$
\left.\frac{d^{j}}{d x^{j}}\left(\left(x^{2}-1\right)^{n+1}\right)\right|_{x=-1} ^{x=1}=0, \text { for all } j=0,1, \ldots, n
$$

[^0]For $j=0$ this is obvious, so we assume that $j>0$. Then

$$
\begin{aligned}
\left.\frac{d^{j}}{d x^{j}}\left(\left(x^{2}-1\right)^{n+1}\right)\right|_{x=-1} ^{x=1} & =\left.\frac{d^{j-1}}{d x^{j-1}}\left(2 x(n+1)\left(x^{2}-1\right)^{n}\right)\right|_{x=-1} ^{x+1} \\
& =\left.2(n+1) \sum_{k=0}^{j-1}\binom{j-1}{k} \frac{d^{j-1-k}}{d x^{j-1-k}}(x) \frac{d^{k}}{d x^{k}}\left(\left(x^{2}-1\right)^{n}\right)\right|_{x=-1} ^{x=1}
\end{aligned}
$$

where we used the formula for the $(j-1)$ th derivative of a product ${ }^{1}$ The last factor in each term is zero by the induction hypothesis.

[^1]
[^0]: *MAP 4305; Instructor: Patrick De Leenheer.

[^1]: ${ }^{1}$ This formula says that for two sufficiently smooth functions $f(x)$ and $g(x)$, there holds that $(f g)^{n}=$ $\sum_{k=0}^{n}\binom{n}{k} f^{(n-k)} g^{(k)}$. This formula is an application of the binomial formula and can be proved by induction.

