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Abstract

These notes complement section 9.1 to 9.3 in our Nagle/Saff/Snider text, and illustrate
the different concepts from linear algebra described there in the context of discrete time linear
systems. If you have no, or limited background in linear algebra, you should carefully review
both these notes and the sections from the book.

1 A motivating example

Let’s consider a model of some population with 2 stages, a juvenile and an adult stage. Let J(t),
M(t) denote the number of juveniles and adults at time t. Since we only take a census of the
population every year (or month, or day), time is discrete here, so t = 0, 1, 2, 3, ... We will assume
that juveniles turn into adults and that adults generate offspring. Our first goal is to make a
precise mathematical model that describes this process. Secondly, we would like to use that model
to make predictions about the future composition of the population given the initial composition.

Assumptions for model:

1. We assume that none of the juveniles or adults die.

2. Let f be the fraction of juveniles that matures to adulthood by the next census. Then 1− f
is the fraction of juveniles that remains in the juvenile class.

3. Once an individual becomes an adult, it remains an adult.

4. Let m be the number of offspring generated by 1 adult in 1 unit of time.

Of course, we could immediately criticize this model. For instance, it is quite silly to assume
that no individual ever dies. For now, we will ignore this, and later we will actually modify our
model to reflect death.

Question: Given the current composition of the population, what is the composition at the
time of the next census? In other words, knowing J(t) and M(t), what will J(t + 1) and M(t + 1)
be? Well, fJ(t) of juveniles grow into adults and all M(t) adults remain adult, so

M(t + 1) = fJ(t) + M(t).

Similarly, (1 − f)J(t) juveniles remain juveniles while mM(t) offspring are born which enter the
juvenile class, so

J(t + 1) = (1− f)J(t) + mM(t)

So our model, which holds for all t = 0, 1, 2, ... is:

J(t + 1) = (1− f)J(t) + mM(t)
M(t + 1) = fJ(t) + M(t)

But what does all this have to do with matrices? Well, it turns out that it is very useful to
compactify the above model by defining certain vectors (which is just a column of numbers) and
a matrix (which is really just a table of numbers). Let

x(t) =
(

J(t + 1)
M(t + 1)

)
and M =

(
1− f m

f 1

)
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Then x(t) is a two-dimensional vector and M is a 2×2 matrix. Formally, x(t) ∈ R2 and A ∈ R2×2.
Our population model can now be written as follows:

x(t + 1) = Ax(t),

quite a bit of savings of our valuable ink, no? Of course, we have not made clear what Mx(t) is.
It is a product of a matrix and a vector, so we should explain this a bit.

2 Matrices and vectors

See Section 9.3 in the book. A matrix is nothing more than a table of (complex or real, but we’ll
assume complex here) numbers. If matrix A has n rows and m columns, we say that A is in Cn×m.
A column vector with n entries, like x(t) above, can be considered as a specific matrix, namely a
n× 1 matrix, while a row vector with n entries is an 1× n matrix. There are two basic operations
with matrices:

1. Multiplication by a scalar. Example:

3
(

1 2
3 4

)
=

(
3 6
9 12

)
2. Addition. You can only add matrices with the same dimensions. Example:(

1 2
3 4

)
+

(
5 6
7 8

)
=

(
6 8
10 12

)
3. Multiplication. You can only multiply matrices with compatible dimensions, namely AB

makes sense only if A ∈ Cn×m and B ∈ Cm×p. In other words, A should have exactly as
many columns as B has rows, namely m. If this is the case, then AB ∈ Cn×p and the (i, j)-th
entry of AB is the dot product of row i of A and column j of B (check your old calc
book in case you forgot about dot products of vectors). Example:(

1 2
3 4

) (
5 6
7 8

)
=

(
19 22
43 50

)

3 Discrete time linear systems

We want to generalize our particular population model from above a bit to encompass other sorts
of systems. Let x(t) be an n-dimensional column vector, describing the state of some system at
time t. The system we are considering here could be very different from our population model. It
could represent a mechanical system where the state vector contains the positions and velocities
of a bunch of particles moving through space. Or we could be dealing with some electrical circuit
were the components of the state vector represent currents in some wires or voltages over certain
electrical components in the circuit. Generally, we define a discrete time linear system as
follows:

x(t + 1) = Ax(t). (1)

The terminology stems from the fact that (1) can be interpreted as a linear map from a vector
space Rn to itself, mapping a vector x(t) to a vector x(t+1). Recall from linear algebra that when
V and W are vector spaces, then a map T : V → W is called linear if T (ax+ by) = aT (x)+ bT (y)
for all vectors x, y in V and all scalars a and b. Convince yourself now that the map taking a
vector x in Rn to the vector Ax in Rn, is indeed linear. This explains the terminology.

So in practice, calculating x(t + 1) from x(t), amounts to a simple matrix multiplication! Let’s
illustrate this by our population example. Suppose we start with an initial (at t = 0) population
having a composition of 100 juveniles and 0 adults. Then at time 1, the composition will be:

x(1) =
(

1− f m
f 1

) (
100
0

)
=

(
100(1− f)

100f

)
,
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at time t = 2, it is:

x(2) =
(

1− f m
f 1

)
x(1) =

(
100(1− f)2 + 100mf

100(2f − f2)

)
,

and so on for x(3), x(4), ...
Clearly, for our general discrete time linear system (1), we can write down the value of the state

at any given time t = 0, 1, 2, ..., given the initial state x(0)1:

x(t) = Atx(0), (2)

where At of course denotes the product of the matrix A with itself, t times (we agree that A0 is
the so-called identity matrix I, which has 1’s on its diagonal and 0’s elsewhere).

So this is one particular illustration of why matrices are useful. After some reflection, we realize
that in general, multiplying a matrix t times with itself, becomes a quite tedious, computationally
intensive task. It turns out that using some results from linear algebra, there is a very elegant way
to quickly compute an arbitrary power of a matrix.

4 Matrix powers

Let’s start this topic by pointing out a very special, yet very important case. If A ∈ Cn×n is a
diagonal matrix, that is to say, it has the following structure:

A =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn

 ,

then calculating At for any t = 0, 1, 2, 3... is child’s play. The power At is also diagonal:

At =


dt
1 0 . . . 0
0 dt

2 . . . 0
...

...
. . .

...
0 0 . . . dt

n


Now recall a definition from linear algebra: A matrix A ∈ Cn×n is diagonalizable if there is

some matrix T ∈ Cn×n which is invertible2, such that

T−1AT = D,

where D is some diagonal matrix.
So why would this help to calculate At? Here’s why:

At = (TDT−1)t = (TDT−1)(TDT−1) . . . (TDT−1) = TDtT−1, (3)

and since Dt is diagonal, the final matrix, TDtT is very easily calculated as the product of three
matrices! By the way, you should carefully check the above calculations and see where we used
associativity of matrix multiplication, the property that TT−1 = T−1T = I, and the property that
multiplying an arbitrary square matrix by I on either left or right, yields that matrix again.

But is it really that easy? This would mean that computing A100 for some 100 × 100 matrix
amounts to multiplying just 3 matrices of size 100 × 100? So instead of multiplying 99 times we
only need to multiply 2 times? Surely, there must be some catch here, and we must be overlooking
something!? Unfortunately we are: given an arbitrary matrix A, it is not so clear how to find the
matrices T and D; even worse, it’s not even clear whether or not such a matrices exist! In fact,
finding an answer to this question is one of the main goals in a typical linear algebra course.

Theorem 1. A matrix A ∈ Cn×n is diagonalizable if and only if it has a basis of eigenvectors.

Although this result looks very short and neat, it makes no sense to us right now since we have
not said what an eigenvector is or what a basis is. So, let’s take a deep breath, and get ready to
make a serious detour first, before proving this important result.

1Can you prove this claim, using induction?
2A matrix T ∈ Cn×n is invertible if there is some matrix T−1 ∈ Cn×n such that TT−1 = T−1T = I.
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4.1 Basis of a vector space

Definition 1. Let V be a vector space, and S = {v1, v2, . . . , vm} be a subset of vectors in V . We
say that S is linearly dependent if there are scalars c1, c2, . . . , cm, not all zero, such that

c1v1 + c2v2 + · · ·+ cmvm = 0.

The set S is linearly independent if it is not linearly dependent. In other words, S is linearly
independent if the following holds:

If c1, . . . , cm are such that c1v1 + · · ·+ cmvm = 0, then necessarily c1 = c2 = · · · = cm = 0.

Examples:

1. In R2 the set {(
1
0

)
,

(
2
0

)}
is linearly dependent since we can pick c1 = 2 and c2 = −1, and these scalars are not both
zero (in fact, both are nonzero).

2. In R2 the set {(
1
0

)
,

(
1
1

)}
is linearly independent. To see this assume that c1 and c2 are such that

c1

(
1
0

)
+ c2

(
1
1

)
=

(
0
0

)
.

Equivalently,

c1 + c2 = 0
c2 = 0,

and thus necessarily
c1 = c2 = 0.

Exercises:

1. Let a be a real number. Give a condition for a such that{(
1
a

)
,

(
3
5

)}
is linearly independent in R2.

2. Let S be a finite subset of V that contains the zero vector. Show that S is linearly dependent
in V .

Definition 2. Let G = {g1, g2, . . . , gp} be a subset of a vector space V . We say that G is a
generating set for V if every v ∈ V can be written as a linear combination of elements in W , i.e.
for any given v ∈ V there are scalars c1, . . . , cp such that

v = c1g1 + c2g2 + · · ·+ cpgp.

Example: The set

W =
{(

1
0

)
,

(
2
0

)}
is not generating for R2 since for instance the vector(

0
1

)
can not be written as a linear combination of vectors in S.
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Definition 3. Let B = {b1, b2, . . . , bn} be a subset of a vector space V . Then B is called a basis
for V if B is linearly independent and generating for V .

Example: The vectors

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
0
...
1

 ,

are a basis for Rn, and also for Cn.3 This basis is called the standard basis, and its vectors the
standard basis vectors.

Now that we know what a basis is, it’s time to explain what an eigenvector is.

4.2 Eigenvalues and eigenvectors

Definition 4. Let A ∈ Cn×n. We say that the vector x ∈ Cn is an eigenvector of A if x 6= 0, and
if there is some scalar λ ∈ C, such that

Ax = λx. (4)

The scalar λ is called the eigenvalue corresponding to the eigenvector x.

It’s important to note that eigenvectors are not be zero! How do we determine these
eigenvector-eigenvalue pairs? Let’s examine (4), and re-write the problem a bit. We are trying to
find a nonzero x ∈ Rn such that there is some scalar λ such that:

(A− λI)x = 0. (5)

This means that we are asking that the kernel4 of the matrix A − λI contains a non-zero vector.
Notice that this is equivalent with saying that the columns of the matrix are linearly dependent.
In linear algebra it is shown that this is equivalent with saying that the matrix A − λI is not
invertible. We then call the matrix singular.

It turns out that for arbitrary square matrices, there is a simple test to check if they are singular:

The matrix B ∈ Cn×n is singular if and only if its determinant det(B), is zero.

The topic of determinants is worth a study in itself, but for the purposes of this course, it will be
enough that you are able to calculate it for 2× 2 and 3× 3 matrices. Basically, given a matrix, its
determinant is a scalar which you compute as follows:

1. For matrices in C2×2. Let

A =
(

a11 a12

a21 a22

)
,

then
det(A) = a11a22 − a21a12

So, it is the difference of the product of the diagonal entries and the product of the off-diagonal
entries.

2. The determinant of matrices in C3×3 is given in terms of the determinant of matrices in
C2×2. Let

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,

then

det(A) = a11 det
(

a22 a23

a32 a33

)
− a12 det

(
a21 a23

a31 a33

)
+ a13 det

(
a21 a22

a31 a32

)
.

3Prove this
4The kernel of a matrix B ∈ Cn×m is defined as the set of all vectors x ∈ Cm for which Bx = 0.
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Examples:

1.

det
(

1 2
3 4

)
= 4− 6 = 3.

2.

det

1 2 1
2 3 2
3 4 3

 = (9− 8)− 2(6− 6) + (8− 9) = 0,

so this matrix is singular, which we anticipated since the first and last column are the same,
so the columns are linearly dependent.

Returning to our eigenvector-eigenvalue problem, let’s see what happens if A is a 2 × 2 matrix.
Then writing det(A− λI) = 0 more explicitly, we have:

det
(

a11 − λ a12

a21 a22 − λ

)
= (a11 − λ)(a22 − λ)− a21a12 = 0.

After some manipulations, we find that λ (unknown for now!) should satisfy

λ2 − (a11 + a22)λ + (a11a22 − a12a21) = 0.

In other words, the λ’s we’re after, are roots of a quadratic equation, which we call the charac-
teristic equation of the matrix A.

Exercise: Determine the characteristic equation of a matrix in C3×3. It turns out that it is a
cubic equation.

This can be generalized to arbitrary square matrices:

If A ∈ Cn×n, then its characteristic equation is

pn(λ) = 0,

where pn(λ) is an n-th order polynomial whose coefficients depend on the entries of A.

Consequently, and more importantly,

Eigenvalues of a matrix A ∈ Cn×n are the roots of an n-th order polynomial!

The Fundamental Theorem of Algebra tells us that an n-th order polynomial with complex coef-
ficients has n roots (some of which may coincide of course), and thus a matrix A ∈ Cn×n has n
eigenvalues. Once you have found the eigenvalues of a matrix, you determine their eigenvectors as
follows: Let λ be an eigenvalue. Plug it into (5), and solve the resulting set of linear equations for
some nonzero x. An example will make things clear.

Example: Let

A =
(

1 1
1 1

)
.

then its characteristic equation is

det
(

1− λ 1
1 1− λ

)
= (1− λ)2 − 1 = λ2 − 2λ = 0,

which has 2 roots
λ1 = 0, λ2 = 2.

To find an eigenvector associated to λ1, replace λ in (5) by 0 to get(
1 1
1 1

) (
x1

x2

)
=

(
0
0

)
,

or more explicitly

x1 + x2 = 0
x2 + x2 = 0,
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which is satisfied when we pick x1 = 1 and x2 = −1 for instance (Remember, we’re only interested
in a nonzero solution, that is either x1 or x2 should be nonzero). So

x =
(

1
−1

)
is and eigenvector associated to the eigenvalue λ1 = 0. Of course we could have picked x1 = a and
x2 = −a, for any given nonzero scalar a! In fact, this is a general property of eigenvectors: If x
is an eigenvector associated to eigenvalue λ, then ax is also an eigenvector associated to the same
eigenvalue λ, for arbitrary nonzero scalars a.5

Exercise: Show that
(

1
1

)
is an eigenvector associated to eigenvalue λ2 = 2.

4.3 Proof of Theorem 1

Only if-part Let A be diagonalizable. Then there is a non-singular matrix T ∈ Cn×n such that

T−1AT = D,

and thus
AT = TD.

More explicitly, there are column vectors t1, . . . , tn (namely the columns of the matrix T ) such
that

Ati = diti,

for all i = 1, 2, . . . , n. In other words, the ti are eigenvectors of A with corresponding eigenvalues
di. Now since the matrix T is non-singular, its columns form a basis for Cn×n6

If-part Let xi, i = 1, 2, . . . , n be a basis of eigenvectors of A, each having a corresponding
eigenvalue λi. Then

Axi = λixi,

for all i = 1, . . . , n. But using matrix notation, this is the same as writing

AX = XΛ,

where

X = [x1 x2 . . . xn] and Λ =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 .

Since the columns of X form a basis for Cn×n, it follows that X is invertible, and hence

X−1AX = Λ,

so that A is indeed diagonalizable.
Discussion
This theorem is important for 2 reasons:

1. It tells us exactly which matrices are diagonalizable, namely those that have a basis of
eigenvectors.

2. It helps us in our initial calculation problem of powers of a matrix, by providing us with
the matrices T and D. Indeed, the above proof reveals that T is simply the matrix whose
columns are the n eigenvectors of A, and the matrix D is the diagonal matrix whose diagonal
elements are just the eigenvalues of the matrix A.

5Prove this.
6Here, we used the -unproved- fact from linear algebra that if a set S = {v1, v2, . . . , vn} of n vectors in Cn×n is

linearly independent, then it is also generating for Cn, and hence forms a basis for Cn×n.
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So really, we just killed two birds with one stone!
Before returning to our population model, let us point out that

1. Some matrices are not diagonalizable! The most important example to keep in mind is(
0 1
0 0

)
.

Exercise: Verify that this matrix is not diagonalizable. This is an example of a matrix
which is in Jordan canonical form. It is also an example of a so-called nilpotent matrix
(A matrix B ∈ Cn×n is nilpotent if there is some positive integer k such that Ak is the zero
matrix). Later in our course, such matrices may play an important role, but for now, they
don’t. Just be aware of their existence.

2. In linear algebra it is shown that there is an important class of matrices which are always
diagonalizable, namely matrices that have distinct eigenvalues. Keep this in mind, as it
arises very often in applications.

3. Another important class of matrices which are always diagonalizable are symmetric matri-
ces in Rn×n. A matrix A in Rn×n is symmetric if the (i, j)th entry equals the (j, i)th entry
of the matrix for all i, j = 1, . . . , n. More information is known about the eigenvalues and
eigenvectors of symmetric matrices. This is an important result from linear algebra which
we reproduce here without proof.

Theorem 2. Let A ∈ Rn×n be symmetric. Then it has real eigenvalues and it is diagonal-
izable. Moreover, the eigenvectors corresponding to the eigenvalues form an orthogonal basis
of Rn (that is, the dot product of two distinct eigenvectors is zero). In other words, when

T−1AT = D,

then D has real entries, and distinct columns of the matrix T are orthogonal (any matrix
with this property is called an orthogonal matrix).

5 Population model revisited

Let f = 1 so that all juveniles mature into adults in 1 time step, and m = 2, so that an adult
generates 2 offspring in that same period. Assume that we start with 10 juveniles and 15 adults.

Question Calculate the composition of the population for arbitrary t.
The answer is

x(t) = Atx(0),

where

A =
(

0 2
1 1

)
, and x(0) =

(
10
15

)
.

From our discussion on matrix powers we know that IF A is diagonalizable, then

At = TDtT−1,

where D is a diagonal matrix with the eigenvalues of A and the columns of T are the corresponding
eigenvectors. We will see shortly that A is indeed diagonalizable. The eigenvalues of A are roots
of (check this!)

λ2 − λ− 2 = 0,

and they are
λ1 = 2, λ2 = −1,

with corresponding eigenvectors

x1 =
(

1
1

)
, x2 =

(
2
−1

)
,
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Since {x1, x2} for a basis for R2 if follows from Theorem 1 that A is diagonalizable. Let

T =
(

1 2
1 −1

)
, D =

(
2 0
0 −1

)
.

Then by the subsequent remark

T−1 =
(

1/3 2/3
1/3 −1/3

)
.

We conclude that

x(t) =
(

1 2
1 −1

)
Dt

(
1/3 2/3
1/3 −1/3

) (
10
15

)
= 2t

(
40/3
40/3

)
+ (−1)t

(
−10/3
5/3

)
.

Notice that although the expression for the solution x(t) contains fractional terms, it will always
be a vector with integer-valued components, when x(0) has integer-valued components. Moreover,
even though negative terms appear in x(t) (namely at odd values of time t), the components of
x(t) are never negative, as they should, since they represent numbers of individuals that are in a
certain stage.

Remark 1. We did not say yet how to compute the inverse of an invertible matrix. Let

A =
(

a b
c d

)
be invertible (i.e. det(A) = ad− bc 6= 0), then

A−1 =
1

det(A)

(
d −b
−c a

)
.

For an invertible 3× 3 matrix

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,

we have that

A−1 =
1

det(A)

+A11 −A21 +A31

−A12 +A22 −A32

+A13 −A23 +A33


(notice the inverted indices!!!), where for every i, j = 1, 2, 3, each Aij is the determinant of the
matrix that you obtain by deleting the ith row and jth column from the matrix A. For example,

A23 =
(

a11 a12

a31 a32

)
.

6 Stability concepts

Let us start with a very simple case that reveals the key issues concerning the notion of stability.
Consider a 1-dimensional discrete time linear system:

x(t + 1) = ax(t), t = 1, 2, . . .

for some a ∈ R. The system is 1-dimensional since x(t) takes values in R1 ≡ R. Given the initial
condition x(0) = x0 we wonder what happens to the solution sequence x(1), x(2), . . . when t →∞.
Does the sequence converge, or not? Does it remain bounded, or not? Well, let’s see. We know
that

x(t) = atx0, t = 0, 1, . . . ,

and therefore,

1. If |a| < 1, then limt→∞ x(t) = 0, no matter what x0 is.
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2. If |a|=1, then x(t) remains bounded for all t, no matter what x0 is. In fact, if a = 1, then
x(t) = x0 for all t, whereas if a = −1, then x(t) = (−1)tx0, so the solution sequence oscillates,
or jumps, between x0 and −x0.

3. If |a| > 1, then limt→∞ x(t) = ∞ when x0 6= 0. In particular, if a solution does not start in
0, it grows unbounded (of course, if it did start in 0 it remains there forever after).

So it turns out that the deciding factor in this discussion is whether or not the absolute value of
a is less than or greater than 1. We would like to extend this to general discrete time linear
systems (1). If we are really cavalier and decide to jump in blindly, we would be tempted to say that
it would depend on the absolute value of the matrix A. But what is the absolute value of a matrix?
Hmm, not so clear? We will show in a few minutes that we should phrase our condition in terms
of the moduli of the eigenvalues of the matrix A. The word ”modulus”7 replaces the word
”absolute value” since for general matrices A -even those having only real entries- the eigenvalues

could be complex numbers (for example, check that the matrix
(

0 1
−1 0

)
has eigenvalues ±i).

OK, enough philosophy, let’s make all this mathematically precise. Consider (1) and assume
that the matrix A is diagonalizable. By Theorem 1 we know that A has a basis of eigenvectors,
let’s call them v1, v2, . . . , vn with associated eigenvalues λ1, λ1, . . . , λn. Now consider the initial
condition x0 for our system. Since the eigenvectors of A form a basis for Rn, we can write

x0 = c1v1 + c2v2 + · · ·+ cnvn (6)

for appropriately chosen (complex) scalars c1, c2, . . . , cn (recall that we can always do this because
a basis is a generating set). Consider the solution sequence that starts in x0. At time t it is

x(t) = Atx0,

and combining this with (6), we find that

x(t) = At(c1v1+c2v2+ · · ·+cnvn) = c1A
tv1+c2A

tv2+ · · ·+cnAtvn = c1λ
t
1v1+c2λ

t
2v2+ . . . cnλt

nvn.

In the last step we used that Avi = λivi for all i = 1, 2, . . . , n. From this expression we immediately
see that

Theorem 3. Let A ∈ Rn×n be diagonalizable, with eigenvalue-eigenvectors pairs (λi, vi) for i =
1, . . . , n.

1. If |λi| < 1 for all i = 1, . . . , n, then limt→ x(t) = 0, no matter what x0 is.

2. If |λi| ≤ 1 for all i = 1, . . . , n, then x(t) remains bounded.

3. If there is some eigenvalue λj such that |λj | > 1, then x(t) grows unbounded for almost all
initial conditions x0. More precisely, x(t) grows unbounded whenever the initial condition x0

is such that cj 6= 0 in (6).

Visualizing this in the complex plane C, this amounts to checking whether or not the eigenvalues
of A are inside (case 1), or on (case 2) the unit circle S = {z ∈ C | |z| = 1}, or that A has an
eigenvalue outside the unit circle (case 3).

Remark 2. Although we will postpone a precise definition of the notions, stability, asymptotic
stability and instability, we say that system (1) is asymptotically stable in case 1, stable in
case 2 and unstable in case 3. This terminology is not entirely precise, as these notions should
be defined for particular solutions of system (1), not for the system itself. But when no reference
is made to a particular solution, then one is usually implicitly assuming that the zero solution is
meant. So to be precise, we should say that the zero solution of system (1) is stable, asymptotically
stable or unstable.

7Recall that the modulus of a complex number z = a + ib is defined as |z| =
√

a2 + b2.
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Remark 3. The previous remark suggests that there may be other particular solutions aside from
the zero solution. A point z ∈ Rn is called a fixed point of system (1) if z = Az. Clearly,
the terminology stems from the fact that if we pick an initial condition in a point that satisfies
this equation, then the solution sequence is the constant sequence, z, z, z, . . . In other words, the
solution remains in z for all subsequent times. Notice that z = 0 is always a fixed point of system
(1), which explains why stability of a system is sometimes equated with stability of the zero solution
as we just explained. But what about nonzero fixed points?

Exercise. Show that system (1) has a nonzero fixed point z if and only if z is an eigenvector
of the matrix A with associated eigenvalue λ = 1.

7 Discrete time Markov chains

In this section we discuss an important application of discrete time linear systems, namely discrete
time Markov chains. But let’s begin modestly, and consider a simple computer network with 2
PC’s, and assume we wish to study an information packet -like a file- that travels between the
PC’s. Unfortunately, generally we don’t know where the packet is, unless perhaps at the initial
time. For subsequent times, the only information available to us is the probability that the packet
is in PC1. (and then 1 minus that probability is the probability that the packet is in PC2). Thus,
the state of our system is the following vector

x(t) =
(

x1(t)
x2(t)

)
,

where xi(t) denotes the probability that the packet is in PCi at time t, for i = 1 or 2. Of course,
x1(t) + x2(t) = 1, while xi(t) ∈ [0, 1] for i = 1, 2. Now, assuming that the packet is in PC1 at a
certain time, then the probability that in the subsequent time, the packet has switched to PC2 is
p21. Similarly, if it was at PC2, then the probability it has switched to PC1 is p12. Consequently,
if it was at PC1, then the probability that the packet is still at PC1 at the subsequent time, is
1− p21 and similarly, the probability that is stays at PC2 when it starts there, is 1− p12. We can
now write down equations for x(t + 1), given x(t):

x1(t + 1) = (1− p12)x1(t) + p12x2(t)
x2(t + 1) = p21x1(t) + (1− p21)x2(t)

In matrix notation,
x(t + 1) = Px(t),

where

P =
(

1− p21 p12

p21 1− p12

)
(7)

This matrix P is an example of a so-called stochastic matrix since all its entries are in [0, 1],
and the entries in each column add up to 1.

Of course, nowadays, most computer networks are much larger than that. But that is alright
as we can easily extend our example to model large networks. First, let us slightly modify the
problem setting. Instead of tracking the probability that some information packet is at a certain
PC, the state of our system will consist of the probabilities that a websurfer is visiting a certain
website of one of the n websites on the World Wide Web. Thus, let xi(t) for i = 1, . . . , n be the
probability that a websurfer is visiting website i at time t, and assume that the probability that he
jumps from site i to site j in two subsequent times is pji

8 (and the probability that he stays at site
i is given by pii = 1 −

∑
k 6=i pki). These probabilities are called the transitional probabilities

of the Markov chain. The model becomes

x(t + 1) = Px(t), (8)

8Our notation deviates from the standard one in the Markov chain literature where this probability is denoted
by pij instead.
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where

P =


p11 p12 . . . p1n

p21 p22 . . . p2n

...
...

. . .
...

pn1 pn2 . . . pnn

 (9)

Then clearly each entry of the matrix is in [0, 1] and the entries in each column add up to 1, so
that P is indeed a stochastic matrix.

Let us check some obvious properties of system (8). Since the state x(t) represents a probability
vector, its components should be in [0, 1], and they should add up to 1 at every time if the initial
state x(0) has the same property. That the components of x(t) remain non-negative for all t is
obvious when x(0) is a probability vector since the matrix P has only non-negative entries. So it
suffices to verify that the components of every x(t) add up to 1, and by induction it is enough to
do this for 1 time step:

x1(1) + x2(1) + · · ·+ xn(1) = (1 1 . . . 1)Px(0) = (1 1 . . . 1)x(0) = 1,

where we used the fact that the columns of P add up to 1.
Question: What can be said about the probability vector x(t) when t →∞?
From before we know that the eigenvalues of P will play an important role. What can be said

about these eigenvalues? First, let’s use matrix notation to express that the columns of P add up
to 1:

(1 1 . . . 1)P = (1 1 . . . 1),

or equivalently, that

PT


1
1
...
1

 =


1
1
...
1

 ,

where PT denotes the transpose of the matrix P (this is the matrix obtained from P by
replacing the (i, j)th entry of P by its (j, i)th entry, for all i, j = 1, 2, . . . , n). It is shown in linear
algebra -no proof here- that the eigenvalues of any matrix and its transpose are the same! This
implies therefore that 1 is an eigenvalue of the matrix P . In fact, using the so-called Perron-
Frobenius Theorem from linear algebra (not proved here) it can be shown that the modulus of all
other eigenvalues of P are not larger than 1. Without loss of generality we can therefore order the
eigenvalues as follows:

λ1 = 1 ≥ |λ2| ≥ · · · ≥ |λn|.

Assuming that a slightly stronger condition holds, namely that

λ1 = 1 > |λ2| ≥ · · · ≥ |λn|,

then we see from (assuming as usual that P is diagonalizable)

x(t) = c1(1)tv1 + c2(λ2)tv2 + · · ·+ cn(λn)tvn,

that if c1 6= 0, then
lim

t→∞
x(t) = c1v1.

Although we have not shown it, it follows again from the Perron-Frobenius Theorem that the
eigenvector v1 can be chosen so that it has only non-negative components. Now, since x(t) is a
probability vector for all t, so must be its limit, hence it follows that 1/c1 must equal the sum of
the components of the vector v1, so we have that

lim
t→∞

x(t) =
1∑n

j=1(v1)j
v1.

In other words, the probability vector x(t) approaches the probability vector corresponding to the
eigenvector (appropriately scaled so that it is a probability vector) associated to the eigenvalue 1
as t →∞. This shows the importance of the eigenvector corresponding to the eigenvalue λ1 = 1.
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Remark 4. There are plenty of other application areas where Markov chains are used. Let us
mention a few.

1. A famous example is that of Google’s Page Rank, see http://en.wikipedia.org/wiki/PageRank.
It is famous in part because of all the secrecy that surrounds its calculation by Google which
in principle requires a tremendous computational effort. In its basic form this page rank
is defined as the normalized eigenvector (1/

∑
j(v1)j)v1 of the matrix P whose transitional

probabilities pij are defined as follows:

pij =

{
0, if there is no link from site j to i

1
total number of outlinks of site j , otherwise

The interpretation is that, at least asymptotically (i.e. when t → ∞), a random websurfer
would more likely be visiting websites whose pageranks (which are the corresponding compo-
nents of v1) are larger. Thus the pagerank establishes some kind of measure for the popularity
of webpages.

2. Consider an industrial plant where products move around between workstations (assembly
lines in the car industry for instance, food processing units, etc). It is clear that you can
interpret the plant as a large network where you may wish to track the probability that a
certain item is in one of the nodes of the network. Similarly we could model a mall in which
customers move from one retailer to another, or phone networks, etc.

3. Markov chains are also used in mathematical biology. One example is that of genetic net-
works. Think of genes as “producers” of certain biochemical products, called proteins. They
are connected in a large network and can be switched on and off, meaning that they are pro-
ducing or not producing proteins. [In practice, one way genes are switched off is as follows.
A certain molecule, called an inhibitor, comes and sits on the gene, essentially locking it off
from the rest of the network and thereby preventing it to start producing its protein]. The
state vector would therefore be a vector containing the probabilities that each of the genes
is on.

Optional exercise, for mathematically inclined students: Let P be a stochastic matrix.
We have shown that 1 is an eigenvalue of P , and we have claimed that it is the eigenvalue with
largest modulus. Prove that claim using the following information from the -here, unproved-
Perron-Frobenius Theorem from linear algebra: The eigenvalue r of the matrix P that has the
largest modulus can be characterized by the following variational description:

r = max{λ ≥ 0 | Ax− λx ≥ 0 for some x ≥ 0},

where x ≥ 0 means that all components of the vector x are non-negative.

8 Problems

For the first graded HW, do all of the following 3 problems. More problems will follow later.

1. Consider the population model again. Fix f = 1 and let m ≥ 0 be arbitrary.

(a) Show that the system is unstable and thus almost all solutions grow unbounded.

(b) Let’s modify the model to reflect death of adults. Assume that all juveniles mature be-
tween two consecutive censuses (so f = 1 in terms of our original model). Reproduction,
and right after that death, take place at the end of one cycle, right before the census
is taken. Only matures that were mature at the beginning of the cycle are capable of
reproduction. Thus, the juveniles that matured in this cycle don’t reproduce yet. Right
after reproduction some of the adults die and a fraction s survives to the census. This
census is the starting point of the next cycle. How does the original model change?
(Still assume that m ≥ 0 is arbitrary.) Give conditions for the parameters such that
the system is stable, asymptotically stable and unstable respectively. Show that the
condition for asymptotic stability implies that m < 1. Interpret this inequality.
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2. Suppose that at time t you possess a certain capital C(t) and some investment I(t). At the
start of a new investment cycle, only capital can be invested (there is no re-investment).
You can invest a fraction f ∈ [0, 1] of your capital, and thus (1 − f)C(t) is the capital you
keep. By the end of the financial cycle the invested fraction of the capital yields a guaranteed
interest of r%. However, some of the returns are delinquent, and only a fraction d of the
value of the investment returns as capital to you.

(a) Construct a model whose state consists of C(t) and I(t).

(b) Let f = 1. Show that you will go broke if (1 + r)d < 1, and that you will make money
if the inequality is reversed. Interpret these inequalities.

(c) Let f = 0.5. How do the above inequalities change? Interpret your result.

(d) Generalize this model by diversifying your investment. That is, assume there are n
types of investments I1, . . . , In each having an interest of ri and a delinquency factor of
di.

3. (a) Calculate the Page Rank assuming that the World Wide Web consists of 3 websites.
Suppose that the websites have no self-links, and that the WWW is strongly connected
(that is, given any of the websites, it is possible to reach any of the other websites
following one or more links). What configuration yields the highest page rank for page
1?

(b) Check your calculations with MATLAB, see remark below. Print a copy of you MAT-
LAB worksheet and turn it in together with your homework.

Remark 5. MATLAB is available on all campus computers. It is software that is very friendly to
matrices. When you start it up, you will see a command line >> appear. To define a matrix(

1 1.2
3 4

)
,

type

A = [1 1.2 ; 3 4]

after the command line and hit return. MATLAB will produce an output in the form of the desired
matrix. Now that this matrix has been defined, you can calculate its eigenvector-eigenvalues pairs
by typing the following:

[T,D]=eig(A)

MATLAB will return two matrices T and D, where T contains the eigenvectors and D is a diagonal
matrix containing the eigenvalues on the diagonal.
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