Practice exam I: MAP 4305*

September 11, 2006.

Name:

Student ID:
This is a closed book exam and the use of calculators is not allowed.

1. Let

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) .
$$

(a) Calculate A^{231}.
(b) Discuss stability for the system $x(t+1)=A x(t)$.
2. Consider a network with two nodes (call them 1 and 2) and assume that there is a link from 1 to 2 (but not back), and that both 1 and 2 have a self-link. Calculate the pagerank for both nodes. (To determine the stochastic matrix, use the same rule we used on the HW problem).
3. Suppose that the vector functions

$$
\binom{x_{1}(t)}{x_{2}(t)} \text { and }\binom{y_{1}(t)}{y_{2}(t)},
$$

where $t \in \mathbb{R}$, are solutions of

$$
\dot{x}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) x .
$$

Let $X(t)$ be defined as:

$$
\left(\begin{array}{ll}
x_{1}(t) & y_{1}(t) \\
x_{2}(t) & y_{2}(t)
\end{array}\right)
$$

and define the quantity $m(t)$ as the determinant of the matrix $X(t)$. Show that $m(t)$ satisfies the following differential equation:

$$
\dot{m}(t)=(a+d) m(t) .
$$

Show that this implies that

$$
m(t)=\mathrm{e}^{(a+d) t} m(0) .
$$

Hint: Write $m(t)$ explicitely in terms of $x_{1}(t), x_{2}(t), y_{1}(t)$ and $y_{2}(t)$, and calculate the derivative with respect to time t.
4. Solve the following IVP:

$$
\dot{x}=\left(\begin{array}{cc}
-1 & 1 \\
0 & 2
\end{array}\right) x, \quad x(1)=\binom{1}{2}
$$

[^0]
[^0]: *Instructor: Patrick De Leenheer.

