Practice Exam 2: MAP 4305*

1. Determine stability of the equilibrium at $(0,0)$ of

$$
\begin{aligned}
\dot{x} & =y^{3}-2 x^{3} \\
\dot{y} & =-3 x-y^{3}
\end{aligned}
$$

2. Let

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right), b=\binom{1}{t}, x_{0}=\binom{0}{1}
$$

First find $\mathrm{e}^{t A}$. Next, using the variation of constants formula, solve

$$
\dot{x}=A x+b, \quad x(0)=x_{0}
$$

3. Let $V: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a twice continuously differentiable function. Consider the system

$$
\begin{aligned}
\dot{x} & =V_{x}(x, y) \\
\dot{y} & =V_{y}(x, y)
\end{aligned}
$$

Let $\left(x^{*}, y^{*}\right)$ be a critical point of $V\left(\right.$ ie $\left.V_{x}\left(x^{*}, y^{*}\right)=V_{y}\left(x^{*}, y^{*}\right)=0\right)$. Then $\left(x^{*}, y^{*}\right)$ is clearly an equilibrium point of the system. Can it be a spiral (stable or unstable) or a center?
4. Find the nullclines and equilibria of

$$
\begin{aligned}
\dot{x} & =x(1-x-0.5 y) \\
\dot{y} & =y(1-0.5 x-y)
\end{aligned}
$$

Linearize at each equilibrium to determine its nature, and perform phase plane analysis.

[^0]
[^0]: *Instructor: Patrick De Leenheer.

