Practice Exam 4: MAP 4305*

1. It is known that Hermite's equation

$$
y^{\prime \prime}-2 x y^{\prime}+2 n y=0
$$

where n is a nonnegative integer has polynomial solutions of degree n. Denote these solutions by $H_{n}(x)$. There is a generating function for these polynomials:

$$
\mathrm{e}^{2 t x-t^{2}}=\sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{n!}
$$

- Using the generating function, determine $H_{0}(x), H_{1}(x)$ and $H_{2}(x)$.
- Let $n=2$ and find $H_{2}(x)$ by solving Hermite's equation directly (notice that $x=0$ is an ordinary point).

2. Find (graphically and approximately) the positive eigenvalues and eigenfunctions of the following eigenvalue problem:

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=y(\pi)-y^{\prime}(\pi)=0
$$

Provide an open interval of the form $(0, c)$ for some to be determined $c>0$ which contains λ_{1}, the smallest positive eigenvalue.
3. Find the adjoint problem of

$$
x^{2} y^{\prime \prime}-x y^{\prime}+3 y=0, \quad y(1)=y(2)=0
$$

Is it self-adjoint?
4. Consider the linear operator

$$
L[y]=y^{(4)}
$$

defined on the set of functions having continuous derivatives up to order 4 , that satisfy the following periodic boundary conditions:

$$
y^{(i)}(0)=y^{(i)}(1), \quad i=0,1,2,3
$$

Show that L is self-adjoint, ie show that

$$
\left(L\left[y_{1}\right], y_{2}\right)=\left(y_{1}, L\left[y_{2}\right]\right)
$$

for all y_{1} and y_{2} in the domain of L where $\left(y_{1}, y_{2}\right)$ denotes the usual inner product of the functions y_{1} and y_{2}.

[^0]
[^0]: *Instructor: Patrick De Leenheer.

