Third problem on exam II*

April 14, 2006

We assume mass action kinetics for the following chemical reaction

$$
X+Y \leftrightarrow C \rightarrow Y+Z,
$$

where the positive rate constants are denoted by k_{1+}, k_{1-} and k_{2}. Assume that X is supplied at a constant rate $\alpha>0$ and that z degrades at rate $\beta>0$:

$$
\rightarrow X, \quad Z \rightarrow
$$

1. Write down the differential equations for the concentrations x, y, c and z.

$$
\begin{aligned}
\dot{x} & =-k_{1+} x y+k_{1-} c+\alpha \\
\dot{y} & =-k_{1+} x y+\left(k_{1-}+k_{2}\right) c \\
\dot{c} & =k_{1+} x y-\left(k_{1-}+k_{2}\right) c \\
\dot{z} & =k_{2} c-\beta z
\end{aligned}
$$

2. Suppose that the complex c satisfies the quasi-steady-state assumption:

$$
\frac{d c}{d t} \equiv 0 \Rightarrow c=\frac{k_{1+}}{k_{1-}+k_{2}} x y
$$

Simplify the equations accordingly and show that the system describing x, y and z is linear:
Plug previous expression into the x, y and z equation to get:

$$
\begin{aligned}
\dot{x} & =-k x y+\alpha \\
\dot{y} & =0 \\
\dot{z} & =k x y-\beta z
\end{aligned}
$$

where

$$
k=\frac{k_{1+} k_{2}}{k_{1-}+k_{2}}>0
$$

Since the middle equation implies that $y(t)=y_{0}$, we see that upon replacing y by the constant y_{0} in the remaining equations, we get a linear system.
Assume that the initial concentrations of X, Y and Z are positive, and denote the initial concentration of Y by $y_{0}>0$. Show that the solution converges to the steady state

$$
(\bar{x}, \bar{y}, \bar{z})=\left(\frac{\alpha}{k y_{0}}, y_{0}, \frac{\alpha}{\beta}\right)
$$

Convergence of $y(t)$ to y_{0} is trivial (recall that $y(t)=y_{0}$), so the only thing left to show is that the x and z components converge. The remaining equations are:

$$
\begin{aligned}
\dot{x} & =-k y_{0} x+\alpha \\
\dot{z} & =k y_{0} x-\beta z
\end{aligned}
$$

[^0]In matrix form:

$$
\binom{\dot{x}}{\dot{z}}=\left(\begin{array}{cc}
-k y_{0} & 0 \\
k y_{0} & -\beta
\end{array}\right)\binom{x}{z}+\binom{\alpha}{0}
$$

By the note below, and since the matrix above has two negative eigenvalues $-k y_{0}$ and $-\beta$, we conclude that solutions of the last system converge to $\left(\alpha / k y_{0}, y_{0}, \alpha / \beta\right)$.
(Note: You may use the fact that if $\dot{X}=A X+B$ is a non-homogeneous linear system of arbitrary dimension n which is such that all eigenvalues of A are in the open left half plane, then all solutions converge to the steady state $\bar{X}=-A^{-1} B$.)

[^0]: *MAP 4484/5489; Instructor: Patrick De Leenheer.

