Homework assignment 1^{*}

Due date: Monday February 12, 2007

1. Laguerre's equation

The Laguerre equation is:

$$
x y^{\prime \prime}+(1-x) y^{\prime}+n y=0,
$$

where n is a non-negative integer. Show that for every n, Laguerre's equation has a polynomial solution of degree n, and determine these polynomials for $n=0,1,2$ and 3 .

2. Method of Frobenius I

Find the first 3 terms of the series expansion about $x=0$ of 2 linearly independent solutions to

$$
x^{2} y^{\prime \prime}-x^{2} y^{\prime}+\left(x^{2}-2\right) y=0
$$

3. Method of Frobenius II

Determine the form of a series expansion about $x=0$ of 2 linearly independent solutions to

$$
x y^{\prime \prime}-s y^{\prime}+x^{3} y=0
$$

where s is an arbitrary real number. Don't determine the coefficients of the series. Your answer should depend on the value of s.
4. Property of the Gaussian hypergeometric function.

Denoting the Gaussian hypergeometric function by $F(\alpha, \beta, \gamma ; x)$, show that

$$
\ln (1+x)=x F(1,1,2 ;-x)
$$

5. Properties of Bessel functions.

Denoting the Bessel function of the first kind of order $\nu>0$ by $J_{\nu}(x)$, show that the following properties hold:

$$
\frac{d}{d x}\left(x^{-\nu} J_{\nu}(x)\right)=-x^{-\nu} J_{\nu+1}(x) \text { and } J_{\nu+1}(x)=\frac{2 \nu}{x} J_{\nu}(x)-J_{\nu-1}(x)
$$

[^0]
[^0]: *MAP 4305; Instructor: Patrick De Leenheer.

