Homework assignment 2*

Due date: March 23. 2007.

1. Determine all real eigenvalues and corresponding eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y(\pi)+y^{\prime}(\pi)=0
$$

2. Consider the linear operator

$$
L[y]=y^{(4)},
$$

defined on the set of functions having continuous derivatives up to order 4 , that satisfy the following boundary conditions:

$$
y(a)=y^{\prime}(a)=y(b)=y^{\prime}(b)=0
$$

Show that L is self-adjoint, ie that for all y_{1} and y_{2} in the domain of L, we have that:

$$
\left(y_{1}, L\left[y_{2}\right]\right)=\left(L\left[y_{1}\right], y_{2}\right)
$$

Use this to prove that eigenfunctions of the problem:

$$
L[y]+\lambda y=0, \quad y(a)=y^{\prime}(a)=y(b)=y^{\prime}(b)=0
$$

corresponding to distinct eigenvalues are orthogonal, ie that

$$
\left(y_{1}, y_{2}\right)=0
$$

whenever y_{1} and y_{2} are eigenfunctions corresponding to distinct eigenvalues.
3. Consider the following boundary value problem:

$$
y^{\prime \prime}+y=\sin 2 x, \quad y(0)=y(2 \pi), \quad y^{\prime}(0)=y^{\prime}(2 \pi)
$$

- Using the Fredholm alternative, determine whether or not this problem has solutions.
- If there are solutions, determine them.

4. Consider the following nonhomogeneous boundary value problem:

$$
y^{\prime \prime}+y=f(x), \quad y(0)=y(1)=0
$$

where $f:[0,1] \rightarrow \mathbb{R}$ is given by

$$
f(x)=x(1-x)
$$

Determine a solution of this problem, written as a formal series expansion using an orthonormal system of eigenfunctions of the associated homogeneous problem.

[^0]
[^0]: *MAP 4305; Instructor: Patrick De Leenheer.

