Homework assignment 3*

Due date: Monday April 23, 2007.

1. Find the matrix exponentials of the following matrices (Don't use software for your calculations! You can use only use it to verify your results.):

$$
\begin{gathered}
\\
\\
\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{ccccc}
0 & -1 & -1 \\
-1 & 0 & -1 \\
-1 & -1 & 0
\end{array}\right),
\end{gathered}
$$

2. Give an example of two 2×2 matrices A and B such that $\mathrm{e}^{A+B} \neq \mathrm{e}^{A} \mathrm{e}^{B}$.
3. Determine stability of the zero solution of the following equations:

- $\ddot{x}+\dot{x}+\sin x=0$.
- $\ddot{x}+\dot{x} \cos x+\sin x=0$.

Note that these are problems $12.5 \# 13$ and \# 14 from our text. Ignore the hint given there, and instead try the following function:

$$
V(x, y)=2 \sin ^{2}\left(\frac{x}{2}\right)+\frac{y^{2}}{2}
$$

4. Show that the competition model

$$
\begin{aligned}
\dot{x} & =x\left(-a x-b y+r_{1}\right) \\
\dot{y} & =y\left(-c x-d y+r_{2}\right)
\end{aligned}
$$

where all parameters a, b, c, d, r_{1} and r_{2} are positive, does not have a non-constant periodic solution in the region D :

$$
D=\{(x, y) \mid x>0, y>0\}
$$

Hint: Apply Dulac's criterion with appropriately chosen positive function $B(x, y)$.

5. A system is called Hamiltonian if there is some differentiable function $H: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that the equations of the system are given by:

$$
\begin{aligned}
\dot{x} & =\frac{\partial H}{\partial y}(x, y) \\
\dot{y} & =-\frac{\partial H}{\partial x}(x, y)
\end{aligned}
$$

Suppose that $(0,0)$ is a critical point of the function H (i.e. $\partial H / \partial x(0,0)=\partial H / \partial y(0,0)=0)$, and that H is positive definite in some open neighborhood U of $(0,0)$.
Show that $(0,0)$ is a stable equilibrium of the corresponding Hamiltonian system. Can $(0,0)$ be asymptotically stable?

[^0]
[^0]: *MAP 4305; Instructor: Patrick De Leenheer.

