Practice Exam 2: MAP 4305*

1. Find the positive eigenvalues and eigenfunctions of the following eigenvalue problem:

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)+y^{\prime}(0)=y(\pi)=0
$$

2. Find conditions on f so that the following non-homogeneous BV problem has a solution:

$$
y^{\prime \prime}-y^{\prime}+3 y=f, \quad y(0)=y(\pi)=0
$$

3. Consider the linear operator

$$
L[y]=y^{(4)},
$$

defined on the set of functions having continuous derivatives up to order 4 , that satisfy the following periodic boundary conditions:

$$
y^{(i)}(a)=y^{(i)}(b), \quad i=0,1,2,3
$$

Show that L is self-adjoint with respect to the usual inner product for functions on (a, b).
4. Using the method of eigenfunction expansion, solve the following non-homogeneous BV problem:

$$
y^{\prime \prime}+9 y=1+\cos (x), \quad y^{\prime}(0)=y^{\prime}(\pi)=0
$$

given that the eigenvalues and eigenfuctions of $y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=y^{\prime}(\pi)=0$ are $\lambda_{n}=n^{2}$, $n=0,1, \ldots$, and $\phi_{n}(x)=c_{n} \cos (n x)$ where the c_{n} are arbitrary nonzero constants.

