Practice Exam 3: MAP 4305*

1. Given is a fundamental matrix solution $X(t)$ of a system $\dot{x}=A x$ where A is a (unknown, at least for now) 2 by 2 matrix:

$$
X(t)=\left(\begin{array}{ll}
\mathrm{e}^{5 t} & \mathrm{e}^{5 t}+\mathrm{e}^{-t} \\
\mathrm{e}^{5 t} & \mathrm{e}^{5 t}-\mathrm{e}^{-t}
\end{array}\right)
$$

What is $\mathrm{e}^{t A}$, and what is A ?
2. Find the matrix exponential of:

$$
\left(\begin{array}{lllll}
2 & 1 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right),
$$

3. Solve the following initial value problem (use variation of constants formula):

$$
\dot{x}=A x+b, \quad x(0)=x_{0}
$$

where

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right), b=\binom{1}{t}, x_{0}=\binom{0}{1}
$$

4. Let $V: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a twice continuously differentiable function. Consider the system

$$
\begin{aligned}
\dot{x} & =V_{x}(x, y) \\
\dot{y} & =V_{y}(x, y)
\end{aligned}
$$

Let $\left(x^{*}, y^{*}\right)$ be a critical point of V (ie $\left.V_{x}\left(x^{*}, y^{*}\right)=V_{y}\left(x^{*}, y^{*}\right)=0\right)$. Then $\left(x^{*}, y^{*}\right)$ is clearly an equilibrium point of the system. Can it be a spiral (stable or unstable) or a center?
5. Show that there are no non-constant periodic solutions for:

$$
\begin{aligned}
\dot{x} & =2 x-y+x^{3} y^{2} \\
\dot{y} & =x-y
\end{aligned}
$$

6. Show that the following system has one stable and one unstable (non-trivial) limit cycle. Where are these limit cycles?

$$
\begin{aligned}
\dot{x} & =x\left(r^{2}-3 r+2\right)-y \\
\dot{y} & =y\left(r^{2}-3 r+2\right)+x
\end{aligned}
$$

where $r=\sqrt{x^{2}+y^{2}}$.
(Hint: Use polar coordinates)
7. Complete the discussion in class regarding the van der Pol oscillator by verifying that the region containing the origin and bounded by the line segments $L_{1}: y=x+6, x \in[-3,0], L_{2}: y=6, x \in[0,3]$, $L_{3}: x=3, y \in[-3.6], L_{4}: y=x-6, x \in[0,3], L_{5}: y=-6, x \in[-3,0]$, and $L_{6}: x=-3, y \in[-6,3]$ is a trapping region. Recall the equations for the Van der Pol oscillator:

$$
\begin{aligned}
\dot{x} & =y+x-x^{3} / 3 \\
\dot{y} & =-x
\end{aligned}
$$

[^0]
[^0]: *Instructor: Patrick De Leenheer.

