Homework assignment 2*

Due date: Monday February 25, 2008.

1. (\#3.2.2 (g)) Sketch $f(x)$, the Fourier series of $f(x)$ and calculate the Fourier coefficients when $f(x), x \in[-L, L]$ is given by:

$$
f(x)=\left\{\begin{array}{l}
1, x<0 \\
2, x>0
\end{array}\right.
$$

2. (slight modification of $\# 3.3 .2$ (c)) Let $f(x), x \in[0, L]$ be defined as

$$
f(x)=\left\{\begin{array}{l}
0, x<\frac{L}{2} \\
x, x>\frac{L}{2}
\end{array}\right.
$$

Sketch both Fourier sine series and Fourier cosine series of $f(x)$, and calculate their coefficients.
3. (3.3.18) Let $f(x)$ be piecewise smooth and continuous. (a) Under what conditions are f and its Fourier series equal for all $x \in[-L, L]$. (b) same question for Fourier sine series but $x \in[0, L]$. (c) same question for Fourier cosine series and $x \in[0, L]$.
4. For integer $N \geq 1$ we defined the Dirichlet kernel

$$
D_{N}(x)=\left\{\begin{array}{l}
\frac{\sin \left(\left(N+\frac{1}{2}\right) x\right)}{2 \pi \sin \left(\frac{x}{2}\right)} \text { if } x \neq k 2 \pi, k \in \mathbb{Z} \\
\frac{1}{\pi}\left(N+\frac{1}{2}\right) \text { if } x=k 2 \pi, k \in \mathbb{Z}
\end{array}\right.
$$

- Prove that if $x \neq k 2 \pi, k \in \mathbb{Z}$, then

$$
D_{N}(x)=\frac{1}{\pi}\left(\frac{1}{2}+\cos x+\cos 2 x+\cdots+\cos N x\right)
$$

(Hint: Use formulas for products of trig functions.)

- Show that $D_{N}(x)$ is continuous everywhere (Hint: Recall the famous limit of $\sin x / x$ when $x \rightarrow 0$).
- Bonus: Use your favorite software to plot $D_{N}(x)$ for $N=1,2, \ldots, 5$, and print the sheet with the commands you used, and of course also showing the graphs of the $D_{N}(x)$'s.

5. Let

$$
f(x)=x, \quad x \in(-\pi, \pi)
$$

Using your favorite software, plot the Fourier sine series of f. Also plot the partial sum of the Fourier sine series for $N=5$ and $N=10$, illustrating the Gibbs phenomenon at $x=\pi$.
6. (\# 4.4.7) Let a vibrating string satisfy:

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, u(0, t)=u(L, t)=0, u(x, 0)=f(x), \frac{\partial u}{\partial t}(x, 0)=0
$$

Show that

$$
u(x, t)=\frac{1}{2}(F(x-c t)+F(x+c t))
$$

where F is the odd periodic extension of f.

[^0]7. (\# 4.4.9) From the wave equation
$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$
describing a vibrating string, show that the total energy, defined as the sum of kinetic and potential energy:
\[

$$
\begin{equation*}
E(t)=\int_{0}^{L} \frac{1}{2}\left(\frac{\partial u}{\partial t}\right)^{2} d x+\int_{0}^{L} \frac{c^{2}}{2}\left(\frac{\partial u}{\partial x}\right)^{2} d x \tag{1}
\end{equation*}
$$

\]

satisfies

$$
\begin{equation*}
\frac{d E}{d t}(t)=\left.c^{2} \frac{\partial u}{\partial x} \frac{\partial u}{\partial t}\right|_{0} ^{L} \tag{2}
\end{equation*}
$$

Show that if the two ends of the string at $x=0$ and $x=L$ are fixed, then the total energy remains constant in time.
8. (\#4.4.12) Using (1) - (2), show that the solution to

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, u(0, t)=u(L, t)=0, u(x, 0)=f(x), \frac{\partial u}{\partial t}(x, 0)=g(x)
$$

is unique. (Hint: Let u and v be two solutions. Consider $w=u-v$.)

[^0]: *MAP 4341; Instructor: Patrick De Leenheer.

