Homework assignment 4*

Due date: Monday April 21, 2008.

1. (\# 9.5.5) Inside a circle of radius a, consider Poisson's equation:

$$
\nabla^{2} u=f(x), u(a, \theta)=h_{1}(\theta) \text { for } \theta \in(0, \pi), \text { and } u_{r}(a, \theta)=h_{2}(\theta) \text { for } \theta \in(-\pi, 0)
$$

Represent the solution $u(r, \theta)$ in terms of the Green's function (assumed to be known). Write down the problem to which this Green's function is a solution, but do not solve that problem.
2. (\# 9.5.14) Using the method of images, solve

$$
\nabla^{2} G=\delta\left(x-x_{0}\right)
$$

in the first quadrant $x>0$ and $y>0$ with $G=0$ on the boundary.
3. (\# 9.5.19) Determine the Green's function inside a semi-disk ($0<r<a$ and $0<\theta<\pi$)

$$
\nabla^{2} G=\delta\left(x-x_{0}\right)
$$

with $G=0$ on the boundary.
4. (\# 12.2.4) Solve using the method of characteristics:

$$
\frac{\partial w}{\partial t}+c \frac{\partial w}{\partial x}=0(c>0)
$$

on the first quadrant $x>0$ and $t>0$ if

$$
w(x, 0)=f(x), \quad x>0 \text { and } w(0, t)=h(t), \quad t>0
$$

5. (\# 12.2.5 (a) and (d)) Solve using the method of characteristics:

$$
\frac{\partial w}{\partial t}+c \frac{\partial w}{\partial x}=\mathrm{e}^{2 x}, \quad w(x, 0)=f(x)
$$

and

$$
\frac{\partial w}{\partial t}+3 t \frac{\partial w}{\partial x}=w, \quad w(x, 0)=f(x)
$$

6. (\# 12.6.6 (a)) Consider the following traffic flow problem:

$$
\frac{\partial \rho}{\partial t}+c(\rho) \frac{\partial \rho}{\partial x}=0
$$

Assume that $u(\rho)=u_{\max }\left(1-\rho / \rho_{\max }\right)$ and $c(\rho)=d / d \rho(\rho u(\rho))$. Solve for $\rho(x, t)$ if

$$
\rho(x, 0)=\left\{\begin{array}{l}
\rho_{\max }, \quad x<0 \\
0, \quad x>0
\end{array}\right.
$$

This initial condition corresponds to an infinite line of traffic stopped at a red light at $x=0$ which is started by the light turning green.

[^0]
[^0]: *MAP 4341; Instructor: Patrick De Leenheer.

