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These notes describe some basic concepts from game theory (Nash and strict Nash equilib-
rium and evolutionary stable strategies), and how these lead to a remarkable equation called the
replicator equation which has been used as a model for evolution. They are based largely on [1].

Example: The hawk-dove game.
When animals engage in a conflict (over mates, land ,food etc) they may pick one of two

strategies. Either they behave as hawks in which case they fight until one of them gets injured or
the opponent flees. Or they behave as doves in which case they may display aggressive behavior,
but they retreat as soon as their opponent shows signs of escalating the conflict into a fight. Assume
that the winner of the contest gains G > 0 (a mate, some land, some food), and injury leads to
a loss of I > 0 (no mate, no food, scratches, a decreased level of self-confidence etc). We assume
that the cost of an injury is larger than the value of the gain:

G− I < 0.

Let us consider the outcome of the 4 possible conflict situations:

1. When two hawks meet, there will be a fight with one winner and one loser, and the expected
payoff for each hawk is (G− I)/2.

2. When a hawk meets a dove, the dove bails out, and the hawk receives G > 0.

3. When a dove meets a hawk, the dove flees, and gets nothing, but also does not get harmed,
so his payoff is 0.

4. When a dove meets a dove, he might or might not flee, and his expected gain will be G/2.

We summarize these outcomes in the following expected payoff matrix:

A =
(
G−I

2 G
0 G

2

)
=
(
− ++
0 +

)
The first row contains the expected payoffs of a hawk against a hawk and dove respectively.
Similarly, the second row contains the payoffs of a dove against a hawk and dove respectively.

Now suppose you are the first player (the row player), and you wish to decide which strategy
to pick. Of course, your pick should be such that you maximize your expected payoff. If you
knew that your opponent was a hawk strategist, you would obviously pick the dove strategy since
0 > (G − I)/2. On the other hand, if you knew that your opponent was a dove strategist, you
would pick the hawk strategy since G > G/2.

But in reality you often don’t know your opponent’s strategy, and then it is not clear which
strategy you should pick.

Moreover, the game might take place repeatedly, and you could learn your opponent’s strategy
by observing his or her behavior. It would not be wise of your opponent to fix his strategy and
stick to it forever after. Smarter would be to behave as a hawk or a dove with a certain probability.
Hawk and dove strategies are examples of pure strategies. Someone playing hawk 50% of the time
and dove 50% is an individual who is playing a mixed strategy which can be represented as a

probability vector p =
(

0.5
0.5

)
. There are many other possible strategies of course. In fact we
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can describe the set of all possible mixed strategies by vectors
(

x
1− x

)
where x ∈ (0, 1). Pure

strategies can be described as well using these vectors by allowing x = 1 (for hawk) or x = 0 (for
dove). They are the unit vectors e1 and e2 of the standard basis of R2.

The wealth of possible strategies to choose from has apparently only complicated matters: both
you and your opponent now have an infinite number of strategies to pick from. The question ”What
is the best strategy to play?” which we could not answer if we restricted to pure strategies alone,
does not seem to have become any easier. One of Nash’s contributions was to show that there
always exist ”best strategies” (whatever that means for now). We will first describe a more general
framework of a game, and then learn what these optimal strategies really are.

Normal form games We only deal with what are called symmetric games where two players
may pick from a fixed number n of pure strategies. The payoff matrix A is a real n by n matrix
whose entry in the ith row and jth column contains the payoff for player 1 who played strategy
i, when player 2 has played strategy j. Mixed strategies are represented by probability vectors
denoted by vectors p having the property that pi ∈ [0, 1] and

∑
pi = 1. The expected payoff for

player 1 when he adopts a mixed strategy p and player 2 adopts strategy q is then given by the
following dot product of vectors:

p.Aq,

Indeed, (Aq)i would be the expected payoff of player 1 playing pure strategy i when player 2 adopts
mixed strategy q. Since player 1 plays pure stratey i with probability pi, the above result follows.

Nash equilibrium Assume player 2 adopts strategy q. Then player 1 who is trying to maximize
his payoff should pick a strategy p which is such that the linear function p → f(p) = p.Aq is
maximal. By continuity, and by compactness of the set that contains all probability vectors, we
know that such a strategy will always exist. In fact, there may be several strategies p that maximize
p.Aq. For a given strategy q, we denote the set containing all these maximizers by B(q), and we
call this set the set of best replies to strategy q.

Definition 1. A strategy q is called a Nash equilibrium if q ∈ B(q). In other words, q is a Nash
equilibrium if it is a best reply against itself:

p.Aq ≤ q.Aq, for all probability vectors p. (1)

We see that player 1 cannot do better than to play strategy q if player 2 plays the Nash
equilibrium strategy q. What John Nash did in his 1950 PhD thesis 1 was show that every game
has at least one Nash equilibrium. [For math students: the proof is based on an application
of a fixed point theorem by Kakutani 2]

A stronger notion than that of a Nash equilibrium is the following:

Definition 2. A strategy q is called a strict Nash equilibrium if B(q) = {q}. In other words, q is
a strict Nash equilibrium if it is the only best reply against itself:

p.Aq < q.Aq, for all probability vectors p 6= q. (2)

Caution: Unlike Nash equilibria, strict Nash equilibria do not necessarily exist in every game.
For example, we will see shortly that the hawk-dove game does not have strict Nash equilibria.

Let us now determine the Nash equilibria for all games with 2 pure strategies, and show which
ones are strict. We denote the payoff matrix by

A =
(
a b
c d

)
where a, b, c and d are arbitrary real numbers, and the strategy vectors are written as:

p =
(

x
1− x

)
, x ∈ [0, 1] and q =

(
y

1− y

)
, y ∈ [0, 1].

1http://en.wikipedia.org/wiki/John Forbes Nash A sketch of the proof is in a link to Nash’s 1 page paper Equi-
librium points in N-person games, PNAS 36, 48-49, 1950.

2http://en.wikipedia.org/wiki/Kakutani fixed point theorem
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Then, setting α = a− c and β = b− d, and suppressing some tedious algebra, (1) amounts to:

0 ≤ (y − x)(αy + β(1− y)) for all x ∈ [0, 1]. (3)

and (2) to:
0 < (y − x)(αy + β(1− y)) for all x ∈ [0, 1] with x 6= y. (4)

We will split up the discussion in several cases, depending on the signs of α and β.

1. α = β = 0. In this case (3) is always satisfied, but (4) is not. In this case, all strategies q are
Nash equilibria, but none of them are strict.

2. α = 0, β > 0. Then (3) is satisfied if and only if y = 1. Indeed, if y < 1, then the factor
y − x can always be made negative by a suitable choice of x, and then inequality (3) would
fail. This means that q = e1 (the first pure strategy) is a Nash equilibrium, but since (4)
fails it is not strict. In this case, the first pure strategy e1 is the only Nash equilibrium, but
it is not strict.

3. α = 0, β < 0. A similar reasoning shows that in this case, the first pure strategy e1 is a
non-strict Nash equilibrium, and the second pure strategy e2 is a strict Nash equilibrium.
There are no other Nash equilibria. (HW)

4. α > 0, β = 0. In this case, the first pure strategy e1 is a strict Nash equilibrium, and the
second pure strategy e2 is a non-strict Nash equilibrium. There are no other Nash equilibria.
(verify this)

5. α < 0, β = 0. In this case, the second pure strategy e2 is the only Nash equilibrium, and it is
not strict. (verify this)

6. α, β > 0. Note that αy + β(1 − y) is a convex combination of the positive numbers α and
β, hence it is necessarily positive. Consequently, in this case, the first pure strategy e1 is the
only Nash equilibrium, and it is strict.

7. α, β < 0. In this case, the second pure strategy e2 is the only Nash equilibrium, and it is
strict. (HW)

8. α < 0, β > 0. It is not hard to see that the pure strategies e1 (y = 1) and e2 (y = 0) are not
Nash equilibria. The factor (αy + β(1 − y)) in (3) is zero if y = β

β−α ∈ (0, 1), hence in this
case there is a single, non-strict Nash equilibrium at the mixed strategy:

q =

(
β

β−α
−α
β−α

)
(5)

9. α > 0, β < 0. In this case the pure strategies e1 (y = 1) and e2 (y = 0) are strict Nash
equilibria, and the mixed strategy (5) is a non-strict Nash equilibrium. (HW)

All these cases are summarized in Figure 1.
This case study shows that although there are always Nash equilibria, these are not necessarily

unique (cases 8 and 9). Strict Nash equilibria do not always exist (cases 1,2,5 and 8).
Illustration on the hawk-dove game This game is an example of case 8: α = (G−I)/2−0 <

0 and β = G − G/2 = G/2 > 0. There is a unique, non-strict Nash equilibrium at the mixed
strategy:

q =
(

G
I

I−G
I

)
Notice that at the Nash equilibrium q, the larger the quantity I−G is (i.e. the larger the difference
between the cost of an injury and the gain of a contest), the larger the probability to adopt the
dove strategy tends to be. This agrees with the observation that the dove strategy is widespread
in heavily armed animals (where I is very large), see [2] (there is a link to this paper on the course
webpage).
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Figure 1: α = a − c and β = b − d. The number of Nash equilibria is given in each region, and followed

by the number of strict Nash equilibria in ().

Evolutionary stable strategies (ESS) We have seen that strict Nash equilibria are strategies
that are the only best replies against themselves. If you suspect that your opponent is a strict
Nash strategist, then you should not deviate from that strategy yourself, as your payoff would be
lower. Unfortunately, as we have seen, strict Nash equilibria do not always exist. What strategy
to choose in this case??

We have also seen that Nash equilibria always exist. They are strategies that form a best
reply against themselves. But if they are not strict, there might be an alternative best reply, and
adopting this strategy yields the same payoff. When is it smart to adopt this alternative strategy,
and when is it not? We will see that this leads to a refinement of the concept of a Nash equilibrium
to that of an evolutionary stable strategy, which is due to the evolutionary biologist John Maynard
Smith3.

Definition 3. A strategy q is an ESS if:

1. p.Aq ≤ q.Aq for all probability vectors p. (Nash equilibrium condition)

2. If p′.Aq = q.Aq for some p′ 6= q, then q.Ap′ > p′Ap′. (stability condition)

Note that the first condition says that q should be a Nash equilibrium. Every ESS is thus a
Nash equilibrium. The second condition implies that if there is an alternative best reply p′ to
q, then p′ is NOT a best reply against itself (as q yields a higher payoff), i.e. p′ is not a Nash
equilibrium. The following implications are immediate from the definitions:

q is strict Nash ⇒ q is ESS ⇒ q is Nash.

The way to find all ESS of a game is as follows:

1. Find all Nash equilibria q.

2. Fix a Nash equilibrium q, and determine its corresponding set of best replies B(q). For each
p′ ∈ B(q) with p′ 6= q, the stability condition should hold.

Caution: Unlike Nash equilibria, ESS may not exist for a given game. This will become clear
when we discuss the rock-scissors-paper game.

Illustration on the hawk-dove game We have already determined that this game has only
one (non-strict) Nash equilibrium

q =
(

G
I

I−G
I

)
.

3http://en.wikipedia.org/wiki/John Maynard Smith
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Figure 2: Graphs of the functions (y − x′) and (αx′ + β(1 − x′)) appearing in (6). α = (G − I)/2 < 0,

β = G/2 > 0 and y = G/I ∈ (0, 1).

What is the set of best replies B(q)? Recall that for the hawk-dove game, the second factor in (3)
is zero, and thus every mixed strategy p′ is a best reply to q! To see if the stability condition holds,
we need to check if for all x′ ∈ [0, 1] with x′ 6= y:

0 > (x′ − y)(αx′ + β(1− x′)) (6)

holds.4

In this example, y = G/I and α = (G− I/2 < 0) and β = G/2 > 0. The right hand side in (6)
is the product of two linear functions in x′ on the interval [0, 1]. The first factor is increasing with
x′ and it crosses the x′-axis at y. The second factor is decreasing in x′ (because α − β < 0) and
it crosses the x′-axis at the same point y. This is shown in Figure 2. Thus, the product is indeed
negative if x′ 6= y, and hence (6) is satisfied. Therefore, q is indeed an ESS.

The replicator equation Each individual in a large population might adopt a pure strategy
of some underlying game. Individuals can engage in a game by randomly choosing an opponent.
Depending on the outcome of the game, the individuals might decide to modify their strategy in the
next round, and so the number of individuals adopting a certain pure strategy will usually fluctuate
in time. What drives these fluctuations? According to the theory of evolution, successful strategists
(those with higher payoffs) should be selected for. Can this be described by a mathematical model?
We will study one such model, the replicator equation which captures some interesting features of
the process of evolution.

Consider a game with n pure strategies and the n by n payoff matrix A. Let xi be the fraction
of strategists in a large population that use the pure strategy i. We define the vector

x =


x1

x2

...
xn

 ,

whose components belong to [0, 1] and add up to 1. It is called the state vector of the population.
We wish to derive a differential equation for each fraction xi. But what governs the rate of change
of xi? Imagine you are an ei strategist, and suppose that the state of the population is given by
the vector x. If you randomly pick an opponent from the population, your expected payoff will be:

ei.Ax = (Ax)i

This expected payoff should be compared to the expected payoff of two randomly chosen individ-
uals, which is:

x.Ax
4Notice that (6) is obtained from (3) by reversing the inequality in (3) and making it strict, and by replacing x

by y and y by x′. That this is correct follows from comparing the structure of the conditions in the definition of an
ESS.
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We postulate that the per capita rate of change of the fraction of ei strategists, is proportional to
xi with proportionality factor equal to the difference of both expected payoffs:

(Ax)i − x.Ax.

This factor is positive if (Ax)i − x.Ax > 0, and hence the fraction of ei strategists will increase.
This is in agreement with the evolutionary principle that successful strategists should thrive. If, on
the other hand, (Ax)i−x.Ax < 0, then the fraction of ei strategists should decrease. Summarizing,
we have just introduced the replicator equation:

ẋi = xi((Ax)i − x.Ax), i = 1, . . . , n (7)

This can be written more compactly in matrix notation:

ẋ = diag(x)(Ax− x.Ax1), (8)

where 1 denotes a column vector whose entries are all equal to 1.
Some properties of the replicator equation The state vector x of the replicator equation

is a probability vector. This means that the solutions x(t) of (7) should always be such that if the
components of x(0) add up to 1, then the same must be true for the components of x(t) for all t.
Let us verify this by calculating:

d

dt

(
n∑
i=1

xi(t)

)
=

n∑
i=1

ẋi(t) =
n∑
i=1

xi(t)(Ax(t))i − (x(t).Ax(t))(
n∑
i=1

xi(t))

= x(t).Ax(t)− (x(t).Ax(t)).1 = 0, for all t,

as required.
Similarly, if xi(0) ≥ 0 then xi(t) ≥ 0 for all t. This can be checked by first noticing the following

fact:
If xi(0) = 0, then xi(t) = 0, for all t,

by uniqueness of solutions of the system of differential equations (7). Consequently, if xi(0) ≥ 0,
then xi(t) ≥ 0 for all t, for if this were not the case, there would be some time t∗ where xi(t∗) < 0.
Since xi(t) is a continuous function of t, there would be some t′ where xi(t′) = 0. In other words,
there is some solution with the property that xi(t′) = 0 and xi(t∗) < 0, contradicting the above
fact.

A concise way to summarize all this is by saying that the unit simplex

Sn = {x ∈ Rn |xi ≥ 0 for all i, and
n∑
i=1

xi = 1}

is an invariant set 5 for system (8).
We show the unit simplex in Figure 3 in case n = 2 and 3.
Relationship between the replicator equation and the underlying game What is the

relation between the various notions of the underlying game (Nash equilibrium, ESS), and the
corresponding replicator equation?

Theorem 1. 1. Every pure strategy ej of the underlying game is a steady state of the replicator
equation (8).

2. Let x̄ be a Nash equilibrium of the underlying game. Then x̄ is a steady state of the replicator
equation (8).

Proof. 1. Let ej be a pure strategy of the game. We need to check that for x = ej , there holds
that:

xi((Ax)i − x.Ax) = 0, for all j = 1, . . . , n

This is obvious for all i 6= j because then xi = (ej)i = 0. It is also obvious for i = j because
then (Aei)i − ei.Aei = (Aei)i − (Aei)i = 0.

5In general, a set A is an invariant set of a system of ODE’s ẋ = f(x), if solutions that start in that set, remain
in it. More precisely, if x(0) ∈ A, then x(t) ∈ A for all t.
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Figure 3: The unit simplices for the case n = 2 and n = 3.

2. Let x̄ be a Nash equilibrium of the underlying game. Then

y.Ax̄ ≤ x̄.Ax̄, for all y ∈ Sn

This is true in particular when y = ei, and thus

ei.Ax̄ ≤ x̄.Ax̄ (9)

We claim that this inequality is actually an equality for all i where x̄i > 0:

ei.Ax̄ = x̄.Ax̄, for all i such that x̄i > 0. (10)

Suppose not, then there would be some j with x̄j > 0, such that ej .Ax̄ < x̄.Ax̄. For each
x̄i > 0, we can multiply (9) by x̄i, and add over all i. Since a term corresponding to j is
included in this sum, the result is that:∑

i: x̄i>0

x̄iei.Ax̄ = x̄.Ax̄ <
∑

i: x̄i>0

x̄i(x̄.Ax̄) = 1.(x̄.Ax̄) = x̄.Ax̄,

a contradiction. That x̄ is a steady state of the replicator equation (8) is now not hard to
see. If x̄i = 0, then clearly x̄i((Ax̄)i− x̄.Ax̄) = 0, while if x̄i > 0, this is still the case by (10).

Caution: Not every steady state of the replicator equation (8) is a Nash equilibrium of the
underlying game. For instance, the two pure strategies in the hawk-dove game are steady states
of the replicator equation by the first part of the Theorem, yet, as we have seen earlier, they are
not Nash equilibria of the underlying game.

One of the most important results regarding the replicator equation involves the notion of an
ESS and is stated next without proof, which can be found in [1].

Theorem 2. Let x̄ be an ESS of the underlying game. Then x̄ is an asymptotically stable steady
state of (8). Moreover, if x̄ belongs to the interior of the unit simplex Sn, then all solutions starting
in the interior of Sn converge to x̄.

Illustration on the hawk-dove game We have already established that the mixed strategy(
G
I

I−G
I

)
is an ESS, and that it is the only Nash equilibrium of the underlying game.

The corresponding replicator equation has 3 steady states: e1, e2 (by Theorem 1) and also

x̄ =
(

G
I

I−G
I

)
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Figure 4: Phase-line analysis for (11) (left panel), and for (8) (right panel).

by Theorem 2. In fact, by the same result, x̄ is asympotically stable, and all solutions in the interior
of S2 converge to it. Let us verify this by performing an independent phase line analysis. Since
n = 2, and since we know that for the replicator equation (8), there holds that x1(t) + x2(t) = 1,
it is enough to analyze the dynamics of the scalar ODE for x1:

ẋ1 = x1((Ax)1 − x.Ax) = x1 ((Ax)1 − x1(Ax)1 − (1− x1)(Ax)2) = x1(1− x1)((Ax)1 − (Ax)2)
= x1(1− x1)(αx1 + β(1− x1)),

where α = a− c and β = b− d as before. This can be simplified to:

ẋ1 = x1(1− x1)
(
G− I

2
x1 +

G

2
(1− x1)

)
, (11)

using the specific payoff matrix A of the hawk-dove game.
The product of the first two factors on the right hand side is positive in (0, 1) and 0 in x1 = 0

and x1 = 1. The third factor is a linear function in x1, which has a zero when x1 = G/I, and it
is equal to a − c = G/2 > 0 when x1 = 0. The phase-line analysis for equation (11) is in the left
panel of Figure 4, and it confirms that the steady state at x1 = G/I is asymptotically stable. The
two steady state x1 = 0 and x1 = 1 are clearly unstable. This analysis implies that the steady
state x̄ is asymptotically stable for (8), and that the equilibria e1 and e2 are unstable, see the right
panel of Figure 4.
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The rock-scissors-paper game You are probably familiar with this game. We will see
that the replicator equation associated to a very special case of this game yields some interesting
dynamical behavior. Recall that rock beats scissors, that scissors beats paper, and paper beats
rock. We assume that the 3 by 3 payoff matrix is (R is 1st pure strategy, S is 2nd and P is 3rd)

A =

 0 +1 −1
−1 0 +1
+1 −1 0


We know that the system dynamics for (8) takes place on the unit simplex S3, depicted in the
right panel of Figure 3. Let us start by calculating steady states. By Theorem 1, the 3 corners
e1, e2 and e3 of S3 are steady states. Are there any other steady states on the boundary of S3 (the
boundary consists of all those states where at least one component of the state vector x is 0). For
instance, are there steady states with x3 = 0? If there are, they must satisfy that x1 and x2 are
positive with x1 + x2 = 1, and:

(Ax)1 = (Ax)2 = x.Ax

It is easily verified that x.Ax = 0 no matter what x is, and thus these equations become:

x2 = −x1 = 0 and x1, x2 > 0 with x1 + x2 = 1,

which is impossible. Hence, there are no other steady states on the boundary of S3 where x3 = 0.
Similarly, one can show that there are no other steady states on the boundary of S3 where x2 = 0
or where x1 = 0. Finally, are there steady states in the interior of S3. If so, then these must be
such that x1, x2, x3 > 0 with x1 + x2 + x3 = 1 and:

Ax = 0,

i.e.
x2 − x3 = −x1 + x3 = x1 − x2 = 0.

Clearly, there is a unique solution:

x∗ =

1/3
1/3
1/3


Let us now study the dynamical behavior of (8). First notice that the boundary faces of S3 are

invariant sets.6 To see this, notice that if x3(0) = 0, then dx3/dt = 0, and hence x3(t) = 0 for all
t. In other words, if a solution starts in F3, then it remains there. (Similar arguments hold for F1

and F2) What happens to solutions starting in F3? They are given by the following two equations:

ẋ1 = x1(x2)
ẋ2 = x2(−x1),

where
(
x1

x2

)
∈ S2. This is again a replicator equation! It has exactly two steady states corre-

sponding to two corners, and all solutions converge to
(

1
0

)
. This simply says that if only R and S

were possible strategies to be played, then ultimately all individuals in the population would play
R, as expected. Similar arguments reveal the dynamics on the other invariant sets F1 and F2. We
illustrate the resulting dynamical behavior of the solutions of (8) that lie on the boundary of S3

in Figure 5. We have just constructed an example of a heteroclinic cycle. It consists of 3 steady
states e1, e2 and e3 joined by 3 solutions that connect e1 to e2, e2 to e3 and e3 to e1.

What happens to solutions that start in the interior of S3? It turns out that that the system
has a conserved quantity (this is a quantity which does not change along solutions of the system).
Consider the following function:

P (x) = x1x2x3,

6The 3 boundary faces of S3 are the sets F1 = {x ∈ S3|x1 = 0}, F2 = {x ∈ S3|x2 = 0} and F3 = {x ∈ S3|x3 = 0}.
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Figure 5: Left panel: The heteroclinic cycle of replicator equation corresponding to the rock-scissors-paper

game. Right panel: Periodic solutions for the replicator equation corresponding to the rock-scissors-paper

game. (solutions are traversed clockwise)

and let us see what happens to the value of P along an arbitrary solution x(t) of system (8). To
that end, we calculate:

Ṗ =
d

dt
(P (x(t)))

= ẋ1x2x3 + x1ẋ2x3 + x1x2ẋ3

= x1x2x3 ((Ax)1 + (Ax)1 + (Ax)3 − 3x.Ax)
= x1x2x3 ((x2 − x3) + (−x1 + x3) + (x1 − x2) + 0)
= 0.

In other words, the value of P does not change along any solution of (8), and thus P is a conserved
quantity.

Now imagine what the level set of the function P look like (recall that a level set of the function
P is defined as the set of points x where P (x) equals a given constant). They look like cup shaped
surfaces in R3 that have hyperbolic intersections with planes parallel to the coordinate planes.
Since solutions are confined to move on such surfaces, and also confined to the unit simplex S3, it
is not hard to see that the solution curves in the interior of S3 are in fact closed curves, see Figure
5. These closed curves therefore correspond to periodic solutions of system (8). Notice that the
steady state x∗ corresponds to a particular periodic solution, namely to a closed curve which has
degenerated into a point. The steady state x∗ is surrounded by a band of infinitely many periodic
solutions that accumulate into the heteroclinic cycle on the boundary of S3.

These results tell us that if we would observe a large population of rock-scissors-paper players,
we will see periodic fluctuations in the fractions of players that use a certain strategy.
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HW problems:

1. The prisoner’s dilemma. In this game two people are suspected of committing a serious
crime, but the prosecutor has not enough proof for a conviction. However, they have also
committed a minor offense, and the prosecutor’s case for this crime is a slam dunk. Of
course, what he wants is a confession of the serious crime. So he puts the suspects in
separate interrogation rooms and questions them simultaneously, without the possibility of
communication between them. If both suspects deny, then suspect 1 gets to do 1 year of
prison time for the minor offense. If suspect 1 denies but suspect 2 confesses, then suspect 1
gets 1 + 9 = 10 years of prison time for both crimes.. for both crimes. If suspect 1 confesses
and suspect 2 denies, then suspect 1 is set free. If both confess, then suspect 1 gets 9 years
of prison time for the serious crime. If the first pure strategy is to deny, and the second to
confess, then the payoff matrix is

A =
(
−1 −10
0 −9

)
=
(
− −−
0 −

)
If only pure strategies are played, then no matter which pure strategy suspect 2 chooses,
suspect 1 should choose to confess (0 > −1 and −9 > −10). But since the situation is the
same for suspect 2 by symmetry of the game, this means that both will end up doing 9 years.
The dilemma lies in the fact that if both suspects would have denied, then they would only
have gotten 1 year!

Determine Nash equilibria, strict Nash equilibria and ESS. Analyze the corresponding repli-
cator equation.

2. The thug-gentleman game. In this game we consider the behavior of men engaging in
conflicts. As in the hawk-dove game, we denote the gain to the winner of a contest by G > 0,
and the loss by I > 0, but now we assume that

G− I > 0.

In other words, the cost of an injury is not very high.

There are two strategies, namely the thug and gentleman strategy. Gentleman strategists
really don’t care about the gain and they will decline it, even if they win a fight (noble as
they are...). Gentlemen are also stronger than thugs and will always defeat them. So when
a gentleman meets a gentleman, his expected payoff is (0− I)/2 = −I/2 because he declines
the gain in case he wins. When a gentleman meets a thug, he beats the thug but declines
the gain, and so his expected payoff is 0. When a thug meets a gentleman, he is beaten, and
so the expected payoff of the thug is −I. When two thugs meet, their expected payoff is
(G− I)/2. We have the following payoff matrix (thug is the first pure strategy):

A =
(
G−I

2 −I
0 − I2

)
=
(

+ −−
0 −

)
Determine Nash equilibria, strict Nash equilibria and ESS. Analyze the corresponding repli-
cator equation.
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