1. Prove that if E is a Lebesgue measurable set with positive measure, then the set $E - E = \{x : x = y - z, \ y \in E, \ z \in E\}$ contains an open interval around 0. [Hint: Use the $m(E \cap I) > \alpha m(I)$ problem from the midterm.]

2. Royden, p. 70, # 19.

4. Let X, d be a metric space, μ^* an outer measure on X, and \mathcal{M}_{μ^*} the σ-algebra of μ^*-measurable sets. Prove that every continuous real-valued function on X is measurable, if and only if μ^* is a metric outer measure. [Hint: If F is a closed set, then the function $g(x) = d(x, F)$ is continuous.]