1. Royden, problem 9 on page 145.

2. Let $Lip(M)$ be the set of Lipschitz continuous functions on $[0, 1]$ with Lipschitz constant C with $C \leq M$ ($M > 0$). Show that $Lip(M)$ is a closed subset of $C([0, 1])$, $\| \cdot \|_{\infty}$.

3. Suppose that f is a measurable function on \mathbb{R} which is integrable over every bounded interval. Find necessary and sufficient conditions on f so that $\rho(x, y) = \int_{[x,y]} f$ defines a metric on \mathbb{R} – here we suppose that $x \leq y$ in defining the interval, but impose that $\rho(x, y) = \rho(y, x)$. Then find necessary and sufficient conditions on f for \mathbb{R} to be complete with respect to this metric.

4. Let \mathcal{M} be the set of equivalence classes of almost everywhere finite measurable functions (under equality a.e.) on a measurable set E of finite measure. Let ρ be the metric

$$\rho(f,g) = \int_E \frac{|f - g|}{1 + |f - g|}.$$

Prove that f_n converges in measure to f if and only if f_n converges to f with respect to ρ. Conclude that \mathcal{M} is complete.