

3. Let $w = f(z) = z^i$ be defined using the principal branch of the logarithm. Describe the image in the w-plane of circles centered at 0 in the z-plane and rays from 0 in the z-plane (omitting points z on the negative real axis, of course).

4. Let $P : S \rightarrow \mathbb{C}_\infty$ be stereographic projection. For any map G of S to itself there is induced a map g of \mathbb{C}_∞ to itself by $g = P \circ G \circ P^{-1}$.

(a) Let R_θ be the rotation of \mathbb{R}^3 whose standard matrix is

$$
\begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix}
$$

that the induced map of \mathbb{C}_∞ is given by a Möbius transformation.

(b) Let T be the rotation of \mathbb{R}^3 which maps e_1 to e_3, e_3 to $-e_1$, and fixes e_2. Show that the induced map of \mathbb{C}_∞ is given by a Möbius transformation.

(c) It can be shown that R_θ for $\theta \in [0, 2\pi)$ and T generate $SO(3)$, the group of rotations of \mathbb{R}^3. You can conclude that every rotation of S induces a Möbius transformation. Show that there exists a Möbius transformation which is not induced by a rotation. (You may assume that every rotation has an eigenvector with eigenvalue 1.)