
2. Conway, chapter 3, section 2, problem 29 acd. (You may assume (b).)

3. Using Möbius transformations and powers, construct a conformal map from the upper half disk to the upper half plane.

4. Let Γ a circle contained inside the unit circle with center σ and radius ρ. The aim of this problem is construct a Möbius transformation T which takes the unit circle to itself and Γ to a circle centered at the origin. By a rotation in z we may suppose that σ satisfies $0 \leq \sigma < 1$. By a result from class, the transformation sought must have the form $z \to \gamma \frac{z-a}{1-\overline{a}z}$ for some a of modulus less than 1 and γ with $|\gamma| = 1$. Since the γ factor leaves all circles centered at the origin invariant, it may be omitted.

 (a) Using symmetry of σ and ∞ with respect to Γ, and properties of Möbius maps, derive an equation relating a, σ, and the radius R, of the image circle which shows that a must be real.

 (b) Show that T must take the points 1, σ, -1 to 1, 0, -1 respectively, and so the images of $\sigma \pm \rho$ are $\pm R$.

 (c) Show from this that

 $$a = \frac{1 + \sigma^2 - \rho^2 - \sqrt{(1 - (\sigma - \rho)^2)(1 - (\sigma + \rho)^2)}}{2\sigma}.$$

5. Let T be a Möbius transformation mapping the unit disk onto itself. Let $z(t)$ be a differentiable curve in the unit disk with non-zero tangent vector, and let $w(t) = T(z(t))$. Prove that

$$\frac{|w'(t)|}{1 - |w(t)|^2} = \frac{|z'(t)|}{1 - |z(t)|^2}.$$

In geometry, this would say that T is an isometry with respect to the metric $\frac{|dz|}{1-|z|^2}$. Assuming that segments of the x-axis are geodesics (curves of shortest length) for this metric, show that the general geodesic is either a segment of a diameter or a segment of a circle intersecting the unit circle perpendicularly.