Main Result on Orientability

Theorem 3.26 Let M be a closed connected n manifold. Then:

(a) If M is R orientable, the map $H_n(M; R) \to H_n(M|x; R) \cong R$ is an isomorphism for all $x \in M$.

(b) If M is not R orientable, the map $H_n(M; R) \to H_n(M|x; R) \cong R$ is injective with image $\{ r \in R | 2r = 0 \}$ for all $x \in M$.

(c) $H_i(M; R) = 0$ for $i > n$.

Relation to Γ

Lemma 3.27: Let M be a manifold of dimension n and let $A \subset M$ be a compact subset. Then:

(a) the homomorphism $j_A : H_n(M|A; R) \to \Gamma(A)$ given by $j_A(\alpha)(x) = (x, i_A^x(\alpha))$ is an isomorphism.

(b) $H_i(M|A; R) = 0$ for $i > n$.

Generalization

Lemma: Let M be a manifold of dimension n and let $A \subset M$ be a closed subset. Then:

(a) The homomorphism $j_A : H_n(M|A; R) \to \Gamma(A)$ is a monomorphism with image $\Gamma_c(A)$.

(b) $H_i(M|A; R) = 0$ for $i > n$.

Sections

Definition: Sections over A, $\Gamma(A)$.

Lemma: $\Gamma(A)$ has an R-module structure.

Definition: $v : M_R \to R \mod$ units

Definition: R orientable along A.
Orientability along A

Lemma: M is R orientable along A if and only if there is a homeomorphism $\phi : p^{-1}(A) \to A \times R$ such that $p^{-1}(A) \xrightarrow{\phi} A \times R$ commutes. In this case, $\Gamma(A)$ is isomorphic to the module of maps from A to R.

Lemma: If $j_A : H_n(M|A) \to \Gamma(A)$ is defined by $j_A(\alpha)(x) = (x, i_x^A(\alpha))$, then j_A is a homomorphism.

Corollaries to Main Result

Corollary: If A is connected and non compact, $H_n(M|A; R) \simeq 0$. If M is connected and non compact, $H_n(M; R) \simeq 0$.

Corollary: If M is orientable along A and A is compact with k components, then $H_n(M|A; R) \simeq R^k$.

Corollary: If M is compact and connected, and R has the property that for any unit u and $a \neq 0$, $ua = a \Rightarrow u = 1$, then

$$H_n(M; R) \simeq \begin{cases} R & \text{if } M \text{ is } R \text{ orientable} \\ 0 & \text{otherwise} \end{cases}$$