Course Preview

- Mth 599/636/376 meets MW 10:00
- Students needing third credit (636/676) will give presentation on an agreed topic for third credit.
- Finish Applications of Duality
- ARs, ANRs, AEs, ANEs
- Čech-Alexander-Spanier Cohomology
- Proof of Alexander and Lefschetz Duality
- Künneth Theorem
- Other topics

Other Applications of Duality

- If M^n is orientable w/ boundary, then ∂M is orientable.
- If K is a compact, locally contractible proper subset of S^n, then $\tilde{H}_i(S^n - K) \simeq H^{n-i-1}(K)$
- If M is a compact 3-manifold with boundary, and $H_1(M) \cong 0$, then ∂M is a union of 2-spheres
- If M is a compact manifold with boundary, ∂M is not a retract of M
- If M^n is compact contractible with boundary, then ∂M and $2M$ are homology spheres
- A nonorientable $n - 1$ closed manifold cannot be embedded in S^n or R^n

ANRs, ANEs

- X is an ANR(C) (AR(C)) if whenever X is embedded via e in a C space Y as a closed subspace, then $e(X)$ is a retract of some nbhd of $e(X)$ in Y ($e(X)$ is a retract of Y).
- X is an ANE(C) (AE(C)) if whenever A is closed in a C space Y and $f : A \rightarrow X$ is a map, there exists an extension of f to a map F defined on a neighborhood of A in Y (F defined on all of Y).

Relationship between ANEs and ANRs

Theorem: Suppose that C is preserved by forming adjunction spaces. Then :

- X is an ANE(C) if and only if X is an ANR(C)
- X is an AE(C) if and only if X is an AR(C)

Examples

- R^n, I^n, I^0 are ARs for the normal spaces and for separable metric spaces.
- S^n is an ANR for normal spaces and separable metric spaces.