Covering Dimension

(All spaces are separable metric in this section.)

Definition: The covering dimension of X, $\dim(X)$ is $\leq n$ if every finite open cover of X has a finite open refinement of order $\leq n + 1$. $\dim(X) = n$ if $\dim(X) \leq n$ and $\dim(X) \neq n - 1$.

Definition: The nerve of a locally finite open cover \mathcal{U} is a simplicial complex K that has one vertex v_i for each $U_i \in \mathcal{U}$, so that \(\langle v_{i_1}, \ldots v_{i_n} \rangle \in K \) iff $U_{i_1} \cap \ldots U_{i_n} \neq \emptyset$.

Mapping to Nerves

Definition: Given an open cover \mathcal{U} of X, a map $f : X \to Y$ is a \mathcal{U} map if each $f(x)$ has a neighborhood N such that $f^{-1}(N)$ is in some element of \mathcal{U}.

Lemma: Let \mathcal{U} be a locally finite open cover of X and let K be the nerve of U. Then there is a map $f : X \to |K|$ such that f is a \mathcal{U} map.

Idea: Let $s_i(x) = d(x, X - U_i)$, $t_i(x) = \frac{s_i(x)}{\sum_i s_i(x)}$, and $f(x) = \sum_i t_i(x) \cdot v_i$.

General Position

Definition: Points x_1, x_2, \ldots in R^k are in **general position** if every subset of cardinality $j \leq k + 1$ spans a $j - 1$ simplex.

Lemma: Given a countable dense set x_1, x_2, \ldots in R^k and an $\varepsilon > 0$, there exists a countable dense set y_1, y_2, \ldots in R^k in general position with $d(x_i, y_i) < \varepsilon$ for all i.

Mapping to R^{2n+1}

Lemma: Given a finite open cover of \mathcal{U} of order $n + 1$ X, there is an embedding e of the nerve of \mathcal{U} into R^{2n+1} and a map $f : X \to e(|K|)$ such that f is a \mathcal{U} map.

Lemma: If $\dim(X) = n$, \mathcal{U} is a finite open cover of X, and H is an n-dimensional hyperplane in R^{2n+1}, \(\{ f : X \to R^{2n+1} | f \text{ is a \mathcal{U} map and } f(X) \cap H = \emptyset \} \) is dense and open in $C(X, R^{2n+1})$.
Embedding in \mathbb{R}^{2n+1}

Definition:

$Q_i^n = \{ x \in \mathbb{R}^n | x \text{ has exactly } i \text{ rational coordinates} \}$

$N_i^n = \{ x \in \mathbb{R}^n | x \text{ has at most } i \text{ rational coordinates} \}$

Theorem: If $\dim(X) = n$, there is an embedding of X into $N_n^{2n+1} \subset \mathbb{R}^{2n+1}$. ($N_n^{2n+1}$ is n-dimensional.)

Note: There are also compact universal n-dimensional spaces in \mathbb{I}^{2n+1}

Inductive, Partition Dimension

Definition: $\text{ind}(\emptyset) = -1$. $\text{ind}(X) \leq n$ if X has a basis $\mathcal{B} = \{U_1, U_2, \ldots \}$ with $\text{ind}(\text{Bd}(U_i)) \leq n - 1$ for each i.

Theorem: $\dim(X) \leq n$ if and only if $\text{ind}(X) \leq n$

iff

for each set $\{(A_1, B_1), (A_2, B_2), \ldots (A_{n+1}, B_{n+1})\}$ of $n + 1$ pairs of closed disjoint sets in X, there exist partitions S_i between A_i and B_i with $\cap_i S_i = \emptyset$.

Mapping to spheres

Theorem: $\dim(X) \leq n$ if and only if for each closed subset A of X and for each map $f : A \rightarrow S^n$, there exists an extension $F : X \rightarrow S^n$.

Note: There is a definition of cohomological dimension of a space in terms of mapping to $K(\pi, n)$, a space constructed by starting with S^n and inductively adding cells of higher dimension.

References

- Dimension Theory by Hurewicz and Wallman
- Dimension Theory by Engelking