Čech Cohomology

(All spaces in this section are locally compact subsets of ANRs, equivalently locally compact separable metric.)

Definition: Given $A \subset X^{\text{ANR}}$, partially order the neighborhoods of A by reverse inclusion. Define a directed system of abelian groups $\{ H^q(V) \}$, for neighborhoods V of A, by defining $i_{V_1}^{V_2} : H^q(V_1) \to H^q(V_2)$, for $V_1 \leq V_2$ to be the inclusion induced homomorphism. The qth Čech cohomology of A, $\check{H}^q(A)$, is the direct limit of this system.

Induced Homomorphisms

Definition: Given $A \subset X^{\text{ANR}}$, $B \subset Y^{\text{ANR}}$, and $f : A \to B$, define $f^* : \check{H}^q(B) \to \check{H}^q(A)$ as follows. Extend f to $F : U \to Y$, where U is a nbhd of A. Let W be any neighborhood of B. Then $F : F^{-1}(W) \to W$ induces $F^* : H^q(W) \to H^q(F^{-1}(W)) \to \check{H}^q(A)$.

These homomorphisms, for each W, induce $f^* : \check{H}^q(B) \to \check{H}^q(A)$.

Lemma: The definition of f^* is independent of the extension F and the neighborhood U.

Invariance

Homotopy: In the above setting, if $f, g : A \to B$ are homotopic, $f^* = g^*$.

Funtoriality: $\text{id}^* = \text{id}$, $(f \circ g)^* = g^* \circ f^*$

Invariance: $\check{H}^q(A)$ depends only on A, and not on the embedding of A in X.

Corollary: If A is an ANR, $\check{H}^q(A) \simeq H^q(A)$.

References

Note: There is an alternate definition of Čech cohomology in terms of the cohomology of nerves of covers of A. This depends only on A by definition and is equivalent to the definition we gave.

References:
- Algebraic Topology by Dold
- Algebraic Topology by Greenberg and Harper