Homotopy, Extension, and Classification

Let θ be a generator of $H^N(S^N)$

H(N): If $f : S^N \to S^N$ is a map of degree 0, then f is homotopic to a constant map.

E(N): Let (X, A) be a CW pair, with the cells of $X - A$ of dimension $\leq N + 1$. A map $f : A \to S^N$ extends to a map $g : X \to S^N$ iff $f^*([z]) = f^*(\theta)$, g can be chosen so that $g^*([z]) = [z].$

C(N): Let X be a CW complex of dim $\leq N$. Homotopy classes of maps from X to S^N, $[X, S^N]$, are in 1-1 correspondence with $H^N(X)$ under the correspondence $f \to f^*(\theta)$.

Method of Proof

H(1)

H(N) \implies E(N)

E(N) \implies H(N + 1)

E(N) \implies C(N)

Corollary: Two maps from S^N to S^N are homotopic if and only if they have the same degree.

Degree, Spaces of type (G, n)

Definition: Let $f : S^N \to S^N$. The degree of f, d_f, is the integer such that $f_*([z]) = d_f \cdot [z]$ where $[z]$ is a generator of $H_N(S^N)$. Equivalently, d_f is the integer such that $f^*(\theta) = d_f \cdot \theta$.

Definition: A path connected CW complex X is of type (G, n) if $\pi_i(X) = 0$ for $i \neq n$ and $\pi_n(X) = G$.

Example: S^1 is of type $(Z, 1)$.

Theorem: For every n there are spaces of type (Z, n). These spaces can be constructed by starting with S^n and inductively attaching cells of dimension $\geq n + 1$.

Generalizations

Extension:

Let (X, A) be a CW pair and let Y be a space of type (Z, N). A map $f : A \to Y$ extends to a map $g : X \to Y$ iff $f^*([z]) \subset im(i^*)$ where $i : A \to X$ is inclusion.

Classification:

Let X be a CW complex and let Y be a space of type (Z, N). Homotopy classes of maps from X to Y, $[X, Y]$, are in 1-1 correspondence with $H^N(X)$ under the correspondence $f \to f^*(\theta)$.