Major Theorems Last Term:

Embedding Theorem: Every separable metric space is homeomorphic to a subspace of $\beta I \equiv [0, 1]^{\omega}$.

Tychonoff’s Theorem: A product of compact spaces is compact.

Urysohn’s Lemma: If A, B are closed, disjoint in X, there exists a map $f : X \to [0, 1]$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$.

Tietze’s Extension Theorem: If $A \subset X$ is closed and $f : A \to Y$ is continuous where Y is either \mathbb{R} or an interval in \mathbb{R}, then there exists a continuous function $F : X \to Y$ extending f.

Baire’s Theorem: If X is either compact Hausdorff or complete metric, then a countable intersection of dense and open subspaces of X is dense.

Other Major Theorems:

Cantor Image Theorem: Every separable metric space is the continuous image of a subspace of the Cantor set.

Urysohn Metrization Theorem: Every regular space with a countable basis is metrizable.

Borsuk’s Homotopy Extension Theorem: Suppose $f : X \to U$ is a map into an open subset U of \mathbb{R}^{n}, A is closed in X and $G : A \times [0, 1] \to U$ is a map with $G(a, 0) = f(a)$. If $X \times I$ is normal, then there is a map $F : X \times [0, 1] \to U$ so that $F(x, 0) = f(x)$ and $F(a, t) = G(a, t)$ for each $a \in A$.

Preview of topics in Mth 532

* Completeness (§ 43, 48)
* Topologies on spaces of functions (§ 46)
* Metrization Theorems (§ 39-42)
* More on Compactifications (§ 38)
* Fundamental Group and Covering Spaces (Ch. 9, 11, 13)
* Classification of Surfaces (Ch. 12)

Assignment: read section 43 on completeness and start on the homework.

Also, review the definition and theorem on homotopy on the next page.

Def. Maps f and g from X to Y are **homotopic** if there exists a map $H : X \times [0, 1] \to Y$ such that:

$$H(x, 0) = f(x) \quad \text{and} \quad H(x, 1) = g(x)$$

The map H is called a **homotopy** from f to g.

Theorem:

Homotopy is an equivalence relation on maps from X to Y.

Proof: Last term.

Example: Any two maps f and g into a convex subset of \mathbb{R}^{n} are homotopic via $H(x, t) = t \cdot f(x) + (1 - t) \cdot g(x)$.