Overview

This lecture presents a summary of the metrization theorems from sections 39-42 in the text. The main new ideas are local finiteness and paracompactness.

Local Finiteness

Def. A collection of subsets of a space X is locally finite if each point in X has a neighborhood intersecting only finitely many of the sets.

Lemma: Let A be a locally finite collection of subsets of X. Then:
- Any subcollection of A is locally finite
- The collection of closures of elements of A is locally finite
- The closure of the union of elements of A is the union of the closures of elements of A.

Refinements of Covers

Def. A collection B of subsets of X is countably locally finite if it can be written as a countable union of locally finite collections.

Def. Let \mathcal{A} be a collection of subsets of X. A collection \mathcal{B} is said to refine \mathcal{A} if for each $B \in \mathcal{B}$, there is an $A \in \mathcal{A}$ with $B \subset A$. The refinement is open or closed respectively if the sets in \mathcal{B} are open or closed.

Lemma: If X is a metrizable and A is an open covering of X, then there is a countably locally finite open refinement B of A that is also a cover.

Metrization Theorems

Nagata-Smirnov Metrization Theorem:
A space X is metrizable if and only if X is regular and has a basis that is countably locally finite.

Def. X is paracompact if every open covering has a locally finite open refinement that covers X.

Smirnov Metrization Theorem: A space X is metrizable if and only if it is paracompact Hausdorff and locally metrizable.