Covering Maps

Read Section 53.

Def: Let \(p : E \rightarrow B \) be a surjective map. An open set \(U \) in \(B \) is *evenly covered* by \(p \) if \(p^{-1}(U) \) can be written as a disjoint union \(\bigcup V_\alpha^{\text{open}} \) such that for each \(\alpha \), \(p|_{V_\alpha} : V_\alpha \rightarrow U \) is a homeomorphism.

Def: Let \(p : E \rightarrow B \) be a surjective map. If every point \(b \in B \) has a neighborhood \(U \) evenly covered by \(p \), \(p \) is called a *covering map* and \(E \) is said to be a *covering space* of \(B \).

Examples:

Relation to Local Homeomorphism

Thm: \(p : R \rightarrow S^1 \) given by

\[
p(t) = (\cos 2\pi t, \sin 2\pi t) = e^{2\pi it}
\]

is a covering map.

Note: Covering maps are local homeomorphisms, but the converse isn’t necessarily true.

Examples:

Relation to Subspaces

Thm: Let \(p : E \rightarrow B \) be a covering map. If \(C \) is a subspace of \(B \) and \(D = p^{-1}(C) \), then

\[p|_D : D \rightarrow C \]

is a covering map.

Thm: If \(p : E \rightarrow B \) and \(q : F \rightarrow C \) are covering maps, so is

\[p \times q : E \times F \rightarrow B \times C \]

Examples: