# Polynomial Chaos Approach for Maxwell's Equations in Dispersive Media 

Nathan L. Gibson<br>Assistant Professor<br>Department of Mathematics<br>\section*{Oregon State}

Cascade Computational and Applied Mathematics Seminar April 5, 2014

## Outline

## (1) Maxwell-Debye

(2) Maxwell-Random Debye
(3) Maxwell-PC Debye

4 Debye FDTD
(5) PC-Debye FDTD
(6) Conclusions

## Acknowledgments

Collaborators

- H. T. Banks (NCSU)
- V. A. Bokil (OSU)
- W. P. Winfree (NASA)

Students

- Karen Barrese and Neel Chugh (REU 2008)
- Anne Marie Milne and Danielle Wedde (REU 2009)
- Erin Bela and Erik Hortsch (REU 2010)
- Megan Armentrout (MS 2011)
- Brian McKenzie (MS 2011)
- Duncan McGregor (MS 2013, PhD 2016?)


## Maxwell's Equations

$$
\begin{aligned}
& \frac{\partial \mathbf{B}}{\partial t}+\nabla \times \mathbf{E}=\mathbf{0}, \text { in }(0, T) \times \mathcal{D} \\
& \frac{\partial \mathbf{D}}{\partial t}+\mathbf{J}-\nabla \times \mathbf{H}=\mathbf{0}, \text { in }(0, T) \times \mathcal{D} \\
& \nabla \cdot \mathbf{D}=\nabla \cdot \mathbf{B}=0, \text { in }(0, T) \times \mathcal{D} \\
& \mathbf{E}(0, \mathbf{x})=\mathbf{E}_{\mathbf{0}} ; \mathbf{H}(0, \mathbf{x})=\mathbf{H}_{\mathbf{0}}, \text { in } \mathcal{D} \\
& \mathbf{E} \times \mathbf{n}=\mathbf{0}, \text { on }(0, T) \times \partial \mathcal{D}
\end{aligned}
$$

(Faraday)
(Ampere)
(Poisson/Gauss)
(Initial)
(Boundary)
$\mathbf{E}=$ Electric field vector
$\mathbf{H}=$ Magnetic field vector
$\mathbf{J}=$ Current density
$\mathbf{D}=$ Electric flux density
$\mathbf{B}=$ Magnetic flux density
$\mathbf{n}=$ Unit outward normal to $\partial \Omega$

## Constitutive Laws

Maxwell's equations are completed by constitutive laws that describe the response of the medium to the electromagnetic field.

$$
\begin{aligned}
\mathbf{D} & =\epsilon \mathbf{E}+\mathbf{P} \\
\mathbf{B} & =\mu \mathbf{H}+\mathbf{M} \\
\mathbf{J} & =\sigma \mathbf{E}+\mathbf{J}_{s}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\mathbf{P} & =\text { Polarization } & \epsilon & = \\
\mathbf{M} & \text { Electric permittivity } \\
\mathbf{M} & =\text { Magnetization } & \mu & =\text { Magnetic permeability } \\
\mathbf{J}_{s} & =\text { Source Current } & \sigma & = \\
\text { Electric Conductivity }
\end{array}
$$

where $\epsilon=\epsilon_{0} \epsilon_{\infty}$ and $\mu=\mu_{0} \mu_{r}$.

## Complex permittivity

- We can usually define $\mathbf{P}$ in terms of a convolution

$$
\mathbf{P}(t, \mathbf{x})=g * \mathbf{E}(t, \mathbf{x})=\int_{0}^{t} g(t-s, \mathbf{x} ; \mathbf{q}) \mathbf{E}(s, \mathbf{x}) d s
$$

where $g$ is the dielectric response function (DRF).

- In the frequency domain $\hat{\mathbf{D}}=\epsilon \hat{\mathbf{E}}+\hat{\mathbf{g}} \hat{\mathbf{E}}=\epsilon_{0} \epsilon(\omega) \hat{\mathbf{E}}$, where $\epsilon(\omega)$ is called the complex permittivity.
- We are interested in ultra-wide bandwidth electromagnetic pulse interrogation of dispersive dielectrics, therefore we want an accurate representation of $\epsilon(\omega)$ over a broad range of frequencies.


## Dry skin data



Figure: Real part of $\epsilon(\omega)$, $\epsilon$, or the permittivity [GLG96].

## Polarization Models

$$
\mathbf{P}(t, \mathbf{x})=g * \mathbf{E}(t, \mathbf{x})=\int_{0}^{t} g(t-s, \mathbf{x} ; \mathbf{q}) \mathbf{E}(s, \mathbf{x}) d s
$$

- Debye model [1929] $\mathbf{q}=\left[\epsilon_{\infty}, \epsilon_{d}, \tau\right]$

$$
\begin{aligned}
g(t, \mathbf{x}) & =\epsilon_{0} \epsilon_{d} / \tau \quad e^{-t / \tau} \\
\text { or } \quad \tau \dot{\mathbf{P}}+\mathbf{P} & =\epsilon_{0} \epsilon_{d} \mathbf{E} \\
\text { or } \quad \epsilon(\omega) & =\epsilon_{\infty}+\frac{\epsilon_{d}}{1+i \omega \tau}
\end{aligned}
$$

with $\epsilon_{d}:=\epsilon_{s}-\epsilon_{\infty}$ and $\tau$ a relaxation time.

- Cole-Cole model [1936] (heuristic generalization)
$\mathbf{q}=\left[\epsilon_{\infty}, \epsilon_{d}, \tau, \alpha\right]$

$$
\epsilon(\omega)=\epsilon_{\infty}+\frac{\epsilon_{d}}{1+(i \omega \tau)^{1-\alpha}}
$$

## Outline

## (1) Maxwell-Debye

## (2) Maxwell-Random Debye

(3) Maxwell-PC Debye
4) Debye FDTD


6 Conclusions

## Maxwell-Debye System

Combining Maxwell's Equations, Constitutive Laws, and the Debye model, we have

$$
\begin{align*}
\mu_{0} \frac{\partial \mathbf{H}}{\partial t} & =-\nabla \times \mathbf{E},  \tag{1a}\\
\epsilon_{0} \epsilon_{\infty} \frac{\partial \mathbf{E}}{\partial t} & =\nabla \times \mathbf{H}-\frac{\epsilon_{0} \epsilon_{d}}{\tau} \mathbf{E}+\frac{1}{\tau} \mathbf{P}-\mathbf{J},  \tag{1b}\\
\tau \frac{\partial \mathbf{P}}{\partial t} & =\epsilon_{0} \epsilon_{d} \mathbf{E}-\mathbf{P} . \tag{1c}
\end{align*}
$$

Assuming a solution to (1) of the form $\mathbf{E}=\mathbf{E}_{\mathbf{0}} \exp (i(\omega t-\mathbf{k} \cdot \mathbf{x}))$, the following relation must hold.

## Debye Dispersion Relation

The dispersion relation for the Maxwell-Debye system is given by

$$
\frac{\omega^{2}}{c^{2}} \epsilon(\omega)=\|\mathbf{k}\|^{2}
$$

where the complex permittivity is given by

$$
\epsilon(\omega)=\epsilon_{\infty}+\epsilon_{d}\left(\frac{1}{1+i \omega \tau}\right)
$$

Here, $\mathbf{k}$ is the wave vector and $c=1 / \sqrt{\mu_{0} \epsilon_{0}}$ is the speed of light.

## Stability Estimates for Maxwell-Debye

System is well-posed since solutions satisfy the following stability estimate.

## Theorem (Li2010)

Let $\mathcal{D} \subset \mathbb{R}^{2}$, and let $H, \mathbf{E}$, and $\mathbf{P}$ be the solutions to (the weak form of) the 2D Maxwell-Debye TE system with PEC boundary conditions. Then the system exhibits energy decay

$$
\mathcal{E}(t) \leq \mathcal{E}(0), \quad \forall t \geq 0
$$

where the energy is defined by

$$
\mathcal{E}(t)^{2}=\left\|\sqrt{\mu_{0}} H(t)\right\|_{2}^{2}+\left\|\sqrt{\epsilon_{0} \epsilon_{\infty}} \mathbf{E}(t)\right\|_{2}^{2}+\left\|\frac{1}{\sqrt{\epsilon_{0} \epsilon_{d}}} \mathbf{P}(t)\right\|_{2}^{2}
$$

and $\|\cdot\|_{2}$ is the $L^{2}(\mathcal{D})$ norm.

## Motivation for Distributions

- The Cole-Cole model corresponds to a fractional order ODE in the time-domain and is difficult to simulate
- Debye is efficient to simulate, but does not represent permittivity well
- An alternative approach is to consider the Debye model but with a (continuous) distribution of relaxation times [von Schweidler1907]


Figure: Real part of $\epsilon(\omega), \epsilon$, or the permittivity [REU2008].

## Random Polarization

We can define the random polarization $\mathcal{P}(t, \mathbf{x} ; \tau)$ to be the solution to

$$
\tau \dot{\mathcal{P}}+\mathcal{P}=\epsilon_{0} \epsilon_{d} \mathbf{E}
$$

where $\tau$ is a random variable with PDF $f(\tau)$, for example,

$$
f(\tau)=\frac{1}{\tau_{b}-\tau_{a}}
$$

for a uniform distribution.
The electric field depends on the macroscopic polarization, which we take to be the expected value of the random polarization at each point $(t, \mathbf{x})$

$$
\mathbf{P}(t, \mathbf{x} ; F)=\int_{\tau_{a}}^{\tau_{b}} \mathcal{P}(t, \mathbf{x} ; \tau) f(\tau) d \tau
$$

## Outline

## (1) Maxwell-Debye

## (2) Maxwell-Random Debye

(3) Maxwell-PC Debye
4) Debye FDTD


6 Conclusions

## Maxwell-Random Debye system

In a polydispersive Debye material, we have

$$
\begin{align*}
\mu_{0} \frac{\partial \mathbf{H}}{\partial t} & =-\nabla \times \mathbf{E},  \tag{2a}\\
\epsilon_{0} \epsilon_{\infty} \frac{\partial \mathbf{E}}{\partial t} & =\nabla \times \mathbf{H}-\frac{\partial \mathbf{P}}{\partial t}-\mathbf{J}  \tag{2b}\\
\tau \frac{\partial \mathcal{P}}{\partial t}+\mathcal{P} & =\epsilon_{0} \epsilon_{d} \mathbf{E} \tag{2c}
\end{align*}
$$

with

$$
\mathbf{P}(t, \mathbf{x} ; F)=\int_{\tau_{a}}^{\tau_{b}} \mathcal{P}(t, \mathbf{x} ; \tau) d F(\tau)
$$

## Theorem (G., 201X)

The dispersion relation for the system (2) is given by

$$
\frac{\omega^{2}}{c^{2}} \epsilon(\omega)=\|\mathbf{k}\|^{2}
$$

where the expected complex permittivity is given by

$$
\epsilon(\omega)=\epsilon_{\infty}+\epsilon_{d} \mathbb{E}\left[\frac{1}{1+i \omega \tau}\right] .
$$

Again, $\mathbf{k}$ is the wave vector and $c=1 / \sqrt{\mu_{0} \epsilon_{0}}$ is the speed of light.
Note: for a uniform distribution on $\left[\tau_{a}, \tau_{b}\right]$, this has an analytic form since

$$
\mathbb{E}\left[\frac{1}{1+i \omega \tau}\right]=\frac{1}{\omega\left(\tau_{b}-\tau_{a}\right)}\left[\arctan (\omega \tau)+i \frac{1}{2} \ln \left(1+(\omega \tau)^{2}\right)\right]_{\tau=\tau_{b}}^{\tau=\tau_{a}}
$$

## Stability Estimates for Maxwell-Random Debye

System is well-posed since solutions satisfy the following stability estimate.

## Theorem (G., 201X)

Let $\mathcal{D} \subset \mathbb{R}^{2}$, and let $H, \mathbf{E}$, and $\mathcal{P}$ be the solutions to the weak form of the 2D Maxwell-Random Debye TE system with PEC boundary conditions.
Then the system exhibits energy decay

$$
\mathcal{E}(t) \leq \mathcal{E}(0), \quad \forall t \geq 0
$$

where the energy is defined by

$$
\mathcal{E}(t)^{2}=\left\|\sqrt{\mu_{0}} H(t)\right\|_{2}^{2}+\left\|\sqrt{\epsilon_{0} \epsilon_{\infty}} \mathbf{E}(t)\right\|_{2}^{2}+\left\|\frac{1}{\sqrt{\epsilon_{0} \epsilon_{d}}} \mathcal{P}(t)\right\|_{F}^{2} .
$$

## Outline

## (1) Maxwell-Debye

## (2) Maxwell-Random Debye

(3) Maxwell-PC Debye

4 Debye FDTD


6 Conclusions

## Polynomial Chaos

Apply Polynomial Chaos (PC) method to approximate each spatial component of the random polarization

$$
\tau \dot{\mathcal{P}}+\mathcal{P}=\epsilon_{0} \epsilon_{d} E, \quad \tau=\tau(\xi)=\tau_{r} \xi+\tau_{m}
$$

resulting in

$$
\left(\tau_{r} M+\tau_{m} l\right) \dot{\vec{\alpha}}+\vec{\alpha}=\epsilon_{0} \epsilon_{d} E \hat{e}_{1}
$$

or

$$
A \dot{\vec{\alpha}}+\vec{\alpha}=\vec{f} .
$$

The electric field depends on the macroscopic polarization, the expected value of the random polarization at each point $(t, \mathbf{x})$, which is

$$
P(t, x ; F)=\mathbb{E}[\mathcal{P}] \approx \alpha_{0}(t, \mathbf{x})
$$

Note that $A$ is positive definite if $\tau_{r}<\tau_{m}$ since $\lambda(M) \in(-1,1)$.

## Maxwell-PC Debye

Replace the Debye model with the PC approximation. In two dimensions we have the 2D Maxwell-PC Debye TE scalar equations

$$
\begin{align*}
\mu_{0} \frac{\partial H}{\partial t} & =\frac{\partial E_{x}}{\partial y}-\frac{\partial E_{y}}{\partial x},  \tag{3a}\\
\epsilon_{0} \epsilon_{\infty} \frac{\partial E_{x}}{\partial t} & =\frac{\partial H}{\partial y}-\frac{\partial \alpha_{0, x}}{\partial t},  \tag{3b}\\
\epsilon_{0} \epsilon_{\infty} \frac{\partial E_{y}}{\partial t} & =-\frac{\partial H}{\partial x}-\frac{\partial \alpha_{0, y}}{\partial t},  \tag{3c}\\
A \dot{\vec{\alpha}}_{x}+\vec{\alpha}_{x} & =\vec{f}_{x},  \tag{3d}\\
A \dot{\vec{\alpha}}_{y}+\vec{\alpha}_{y} & =\vec{f}_{y} . \tag{3e}
\end{align*}
$$

where $\vec{f}_{x}=\epsilon_{0} \epsilon_{d} E_{x} \hat{e}_{1}$ and $\vec{f}_{y}=\epsilon_{0} \epsilon_{d} E_{y} \hat{e}_{1}$.

## Outline

## (1) Maxwell-Debye

(2) Maxwell-Random Debye
(3) Maxwell-PC Debye

## 4 Debye FDTD



6 Conclusions

## Yee Scheme for Maxwell-Debye System (in 1D)

$$
\begin{aligned}
\mu_{0} \frac{\partial H}{\partial t} & =-\frac{\partial E}{\partial z} \\
\epsilon_{0} \epsilon_{\infty} \frac{\partial E}{\partial t} & =-\frac{\partial H}{\partial z}-\frac{\partial P}{\partial t} \\
\tau \frac{\partial P}{\partial t} & =\epsilon_{0} \epsilon_{d} E-P
\end{aligned}
$$

become

$$
\begin{aligned}
\mu_{0} \frac{H_{j+\frac{1}{2}}^{n+1}-H_{j+\frac{1}{2}}^{n}}{\Delta t} & =-\frac{E_{j+1}^{n+\frac{1}{2}}-E_{j}^{n+\frac{1}{2}}}{\Delta z} \\
\epsilon_{0} \epsilon_{\infty} \frac{E_{j}^{n+\frac{1}{2}}-E_{j}^{n-\frac{1}{2}}}{\Delta t} & =-\frac{H_{j+\frac{1}{2}}^{n}-H_{j-\frac{1}{2}}^{n}}{\Delta z}-\frac{P_{j}^{n+\frac{1}{2}}-P_{j}^{n-\frac{1}{2}}}{\Delta t} \\
\tau \frac{P_{j}^{n+\frac{1}{2}}-P_{j}^{n-\frac{1}{2}}}{\Delta t} & =\epsilon_{0} \epsilon_{d} \frac{E_{j}^{n+\frac{1}{2}}+E_{j}^{n-\frac{1}{2}}}{2}-\frac{P_{j}^{n+\frac{1}{2}}+P_{j}^{n-\frac{1}{2}}}{2} .
\end{aligned}
$$

## Discrete Debye Dispersion Relation

(Petropolous1994) showed that for the Yee scheme applied to the Maxwell-Debye, the discrete dispersion relation can be written

$$
\frac{\omega_{\Delta}^{2}}{c^{2}} \epsilon_{\Delta}(\omega)=K_{\Delta}^{2}
$$

where the discrete complex permittivity is given by

$$
\epsilon_{\Delta}(\omega)=\epsilon_{\infty}+\epsilon_{d}\left(\frac{1}{1+i \omega_{\Delta} \tau_{\Delta}}\right)
$$

with discrete (mis-)representations of $\omega$ and $\tau$ given by

$$
\omega_{\Delta}=\frac{\sin (\omega \Delta t / 2)}{\Delta t / 2}, \quad \tau_{\Delta}=\sec (\omega \Delta t / 2) \tau .
$$

## Discrete Debye Dispersion Relation (cont.)

The quantity $K_{\Delta}$ is given by

$$
K_{\Delta}=\frac{\sin (k \Delta z / 2)}{\Delta z / 2}
$$

in 1D and is related to the symbol of the discrete first order spatial difference operator by

$$
i K_{\Delta}=\mathcal{F}\left(\mathcal{D}_{1, \Delta z}\right)
$$

In this way, we see that the left hand side of the discrete dispersion relation

$$
\frac{\omega_{\Delta}^{2}}{c^{2}} \epsilon_{\Delta}(\omega)=K_{\Delta}^{2}
$$

is unchanged when one moves to higher order spatial derivative approximations [Bokil-G,2012] or even higher spatial dimension [Bokil-G,2013].

## Outline

## (1) Maxwell-Debye

## (2) Maxwell-Random Debye

(3) Maxwell-PC Debye
4) Debye FDTD

## 5 PC-Debye FDTD

6 Conclusions

The discretization of the PC system

$$
A \dot{\vec{\alpha}}+\vec{\alpha}=\vec{f}
$$

is performed similarly to the deterministic system in order to preserve second order accuracy. Applying second order central differences at $\vec{\alpha}_{j}^{n}=\vec{\alpha}\left(t_{n}, z_{j}\right):$

$$
\begin{equation*}
A \frac{\vec{\alpha}_{j}^{n+\frac{1}{2}}-\vec{\alpha}_{j}^{n-\frac{1}{2}}}{\Delta t}+\frac{\vec{\alpha}_{j}^{n+\frac{1}{2}}+\vec{\alpha}_{j}^{n-\frac{1}{2}}}{2}=\frac{\vec{f}_{j}^{n+\frac{1}{2}}+\vec{f}_{j}^{n-\frac{1}{2}}}{2} \tag{4}
\end{equation*}
$$

Couple this with the equations from above:

$$
\begin{align*}
\epsilon_{0} \epsilon_{\infty} \frac{E_{j}^{n+\frac{1}{2}}-E_{j}^{n-\frac{1}{2}}}{\Delta t} & =-\frac{H_{j+\frac{1}{2}}^{n}-H_{j-\frac{1}{2}}^{n}}{\Delta z}-\frac{\alpha_{0, j}^{n+\frac{1}{2}}-\alpha_{0, j}^{n-\frac{1}{2}}}{\Delta t}  \tag{5a}\\
\mu_{0} \frac{H_{j+\frac{1}{2}}^{n+1}-H_{j+\frac{1}{2}}^{n}}{\Delta t} & =-\frac{E_{j+1}^{n+\frac{1}{2}}-E_{j}^{n+\frac{1}{2}}}{\Delta z} . \tag{5b}
\end{align*}
$$

## Energy Decay and Stability

Energy decay implies that the method is stable and hence convergent.

## Theorem (G., 201X)

For $n \geq 0$, let $\mathbf{U}^{n}=\left[H^{n-\frac{1}{2}}, E_{x}^{n}, E_{y}^{n}, \alpha_{0, x}^{n}, \ldots, \alpha_{0, y}^{n}, \ldots\right]^{T}$ be the solutions of the 2D Maxwell-PC Debye TE FDTD scheme with PEC boundary conditions. If the usual CFL condition for Yee scheme is satisfied $c_{\infty} \Delta t \leq h / \sqrt{2}$, then there exists the energy decay property

$$
\mathcal{E}_{h}^{n+1} \leq \mathcal{E}_{h}^{n}
$$

where the discrete energy is given by

$$
\left(\mathcal{E}_{h}^{n}\right)^{2}=\left\|\sqrt{\mu_{0}} \bar{H}^{n}\right\|_{H}^{2}+\left\|\sqrt{\epsilon_{0} \epsilon_{\infty}} \mathbf{E}^{n}\right\|_{E}^{2}+\left\|\frac{1}{\sqrt{\epsilon_{0} \epsilon_{d}}} \vec{\alpha}^{n}\right\|_{\alpha}^{2} .
$$

Note: $\|\mathcal{P}\|_{F}^{2}=\mathbb{E}\left[\|\mathcal{P}\|_{2}^{2}\right]=\left\|\mathbb{E}[\mathcal{P}]^{2}+\operatorname{Var}(\mathcal{P})\right\|_{2}^{2} \approx\|\vec{\alpha}\|_{\alpha}^{2}$.

## Theorem (G., 2013)

The discrete dispersion relation for the Maxwell-PC Debye FDTD scheme in (4) and (5) is given by

$$
\frac{\omega_{\Delta}^{2}}{c^{2}} \epsilon_{\Delta}(\omega)=K_{\Delta}^{2}
$$

where the discrete expected complex permittivity is given by

$$
\epsilon_{\Delta}(\omega):=\epsilon_{\infty}+\epsilon_{d} \hat{e}_{1}^{T}\left(I+i \omega_{\Delta} A_{\Delta}\right)^{-1} \hat{e}_{1}
$$

and the discrete PC matrix is given by

$$
A_{\Delta}:=\sec (\omega \Delta t / 2) A
$$

The definitions of the parameters $\omega_{\Delta}$ and $K_{\Delta}$ are the same as before. Recall the exact complex permittivity is given by

$$
\epsilon(\omega)=\epsilon_{\infty}+\epsilon_{d} \mathbb{E}\left[\frac{1}{1+i \omega \tau} .\right]
$$

## Dispersion Error

We define the phase error $\Phi$ for a scheme applied to a model to be

$$
\begin{equation*}
\Phi=\left|\frac{k_{\mathrm{EX}}-k_{\Delta}}{k_{\mathrm{EX}}}\right|, \tag{6}
\end{equation*}
$$

where the numerical wave number $k_{\Delta}$ is implicitly determined by the corresponding dispersion relation and $k_{\mathrm{EX}}$ is the exact wave number for the given model.

- We assume a uniform distribution and the following parameters which are appropriate constants for modeling aqueous Debye type materials:

$$
\epsilon_{\infty}=1, \quad \epsilon_{s}=78.2, \quad \tau_{m}=8.1 \times 10^{-12} \mathrm{sec}, \quad \tau_{r}=0.5 \tau_{m} .
$$



Figure: Plots of phase error at $\theta=0$ for (left column) $\tau_{r}=0.5 \tau_{m}$, (right column) $\tau_{r}=0.9 \tau_{m}$, using $h_{\tau}=0.01$.


Figure: Plots of phase error at $\theta=0$ for (left column) $\tau_{r}=0.5 \tau_{m}$, (right column) $\tau_{r}=0.9 \tau_{m}$, using $h_{\tau}=0.001$.

PC-Debye dispersion for FD with $\mathrm{h}_{\tau}=0.01, \mathrm{r}=0.5 \tau, \omega \tau_{\mu}=1$


PC-Debye dispersion for FD with $h_{\tau}=0.01, r=0.9 \tau, \omega \tau_{\mu}=1$


Figure: Log plots of phase error versus $\theta$ with fixed $\omega=1 / \tau_{m}$ for (left column) $\tau_{r}=0.5 \tau_{m}$, (right column) $\tau_{r}=0.9 \tau_{m}$, using $h_{\tau}=0.01$. Legend indicates degree $M$ of the PC expansion.

PC-Debye dispersion for FD with $h_{\tau}=0.001, r=0.5 \tau, \omega \tau_{\mu}=1$


PC-Debye dispersion for FD with $\mathrm{h}_{\tau}=0.001, r=0.9 \tau, \omega \tau_{\mu}=1$


Figure: Log plots of phase error versus $\theta$ with fixed $\omega=1 / \tau_{m}$ for (left column) $\tau_{r}=0.5 \tau_{m}$, (right column) $\tau_{r}=0.9 \tau_{m}$, using $h_{\tau}=0.001$. Legend indicates degree $M$ of the PC expansion.

## Outline

## (1) Maxwell-Debye

## (2) Maxwell-Random Debye

(3) Maxwell-PC Debye
4. Debye FDTD

(6) Conclusions

## Conclusions/Future Work

- We have presented a random ODE model for polydispersive Debye media
- We described an efficient numerical method utilizing polynomial chaos (PC) and finite difference time domain (FDTD)
- We have shown (conditional) stability of the scheme via energy decay
- We have used a discrete dispersion relation to compute phase errors


## References

固 Bokil, V. A. \& Gibson, N. L. (2012), Analysis of Spatial High Order Finite Difference Methods for Maxwell's equations in dispersive media, IMA J. Numer. Anal. 32 (3): 926-956.

Bokil, V. A. \& Gibson, N. L. (2013), Stability and Dispersion Analysis of High Order FDTD Methods for Maxwell's Equations in Dispersive Media, Contemporary Mathematics, Vol. 586.

- Bokil, V. A. \& Gibson, N. L. (2014), Convergence Analysis of Yee Schemes for Maxwell's Equations in Debye and Lorentz Dispersive Media, To Appear.
Gibson, N. L. (201X), Polynomial Chaos for Dispersive Electromagnetics, Submitted.

