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B
?’Tt +VxE=0,in(0,7)xD (Faraday)
oD .
E—FJ—VXH:O, in (0, T)xD (Ampere)
V-D=V-B=0, in(0,T)xD (Poisson/Gauss)
E(0,x) = Eg; H(0,x) = Hy, in D (Initial)
Exn=0, on(0,T)x 9D (Boundary)
E = Electric field vector D =  Electric flux density
= Magnetic field vector B = Magnetic flux density
J = Current density n = Unit outward normal to 092



Maxwell’s equations are completed by constitutive laws that describe the
response of the medium to the electromagnetic field.

D=c+P

B=uH+M

J=0cE+ J;
P = Polarization € = Electric permittivity
M =  Magnetization = Magnetic permeability
Js = Source Current o = Electric Conductivity

where € = €ges and = poftr.



@ We can usually define P in terms of a convolution

P(t,x) = g« E(t,x) = /Otg(t —s5,x;q)E(s, x)ds,

where g is the dielectric response function (DRF).

@ In the frequency domain D = ¢E + 8E = ¢pe(w)E, where e(w) is
called the complex permittivity.

@ We are interested in ultra-wide bandwidth electromagnetic pulse
interrogation of dispersive dielectrics, therefore we want an accurate
representation of e(w) over a broad range of frequencies.
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Figure: Real part of €(w), €, or the permittivity [GLGI6].



t
P(ex) = g + E(t:x) = | g(t — s, x (s, )b,
0
@ Debye model [1929] q = [€x; €4, 7]

g(t,x) = egeg/T et
or TP+ P =epeqE
€d
1+ jwr

or e(w)=¢€x+

with €4 := €5 — € and 7 a relaxation time.

@ Cole-Cole model [1936] (heuristic generalization)
q = [€co, €d, T, O]

€d

6(W) = € T W



© Maxwell-Debye



Combining Maxwell’s Equations, Constitutive Laws, and the Debye model,
we have

uo%—? = -V x E, (1a)
OE €0€d 1
= _ 0 P — 1
€0€oo 5 V xH - E+7'P J, (1b)
T&_P = epeqE — P. (1)

ot



Maxwell-Debye

Assuming a solution to (1) of the form E = Egexp(i(wt — k - x)), the
following relation must hold.

Debye Dispersion Relation
The dispersion relation for the Maxwell-Debye system is given by
2
w
2 elw) = [P

where the complex permittivity is given by

1
€(w) = € + €4 11 ior

Here, k is the wave vector and ¢ = 1/,/jug€q is the speed of light.
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System is well-posed since solutions satisfy the following stability estimate.

Let D C R?, and let H, E, and P be the solutions to (the weak form of)
the 2D Maxwell-Debye TE system with PEC boundary conditions. Then
the system exhibits energy decay

E(t) < E(0), Vt>0

where the energy is defined by

2

E(tY = |EH(E) 2 + VarmE(D]2 + H -P(0)

2

and || - |2 is the L2(D) norm.




@ The Cole-Cole model corresponds to a fractional order ODE in the
time-domain and is difficult to simulate

@ Debye is efficient to simulate, but does not represent permittivity well

@ An alternative approach is to consider the Debye model but with a
(continuous) distribution of relaxation times [von Schweidler1907]
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Figure: Real part of e(w), €, or the permittivity [REU2008].



We can define the random polarization P(t,x; 7) to be the solution to
TP + P = €oeqdE

where 7 is a random variable with PDF f(7), for example,

1
Tb — Ta

f(r) =

for a uniform distribution.
The electric field depends on the macroscopic polarization, which we take
to be the expected value of the random polarization at each point (¢, x)

P(t,x: F) = / " Pt x: 1) (r)dr.
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In a polydispersive Debye material, we have

OoH

= E 2
OE oP
606OOE—VXH—E—J (2b)
oP
T + P = egeqE (2¢)

with
P(t,x; F) = / " P(t,x; 7)dF (7).



well-Random Debye

Theorem (G., 201X)
The dispersion relation for the system (2) is given by

w2

2 relw) = [P

where the expected complex permittivity is given by

1
= E .
€(w) = oo+ [1 + in}
Again, k is the wave vector and ¢ = 1/,/noé€ is the speed of light.

Note: for a uniform distribution on [7a, 7], this has an analytic form since

T=T,

1+ iwt

w(Tp — 7a)

E{ 1 ]: 1 {arctan(m)wiIn(1+(m)2)}

T=Tp
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System is well-posed since solutions satisfy the following stability estimate.

Let D C R?, and let H, E, and P be the solutions to the weak form of the
2D Maxwell-Random Debye TE system with PEC boundary conditions.

Then the system exhibits energy decay
E(t) < £(0), vt >0

where the energy is defined by

2

£(6 = IV + Vel + | 2P
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Apply Polynomial Chaos (PC) method to approximate each spatial
component of the random polarization

TP+ P =epeqE, 7=1(6) =71+ T

resulting in _
(TrM = Tml)& + a= EoedEél

or _
Ad+ad="f.

The electric field depends on the macroscopic polarization, the expected
value of the random polarization at each point (t,x), which is

P(t,x; F) = E[P] =~ ao(t, x).
Note that A is positive definite if 7, < 7, since A(M) € (—1,1).



Replace the Debye model with the PC approximation. In two dimensions
we have the 2D Maxwell-PC Debye TE scalar equations

OH _ OE. OE,

Ko = 3y ~ Bx’ (5
O0Ex, OH 8@0 <
00 =3y T ot (3b)
OE, oH 3a0 Wy
TP T Tox ot (3)
Ady + dy = fr, (3d)
Aay +ay, = F (3e)

where ﬁ( = 606dExél and 6, = GoedEy§1.
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0
T = €oeqE — P
become
Hn+1 — Hn n+1 ntl
R o B T ks
O AL Az
E"tz _ i H° , —H", prtz_prs
Foe J _ +3 J—3 U J
. =
At Az At
n—f—l n—31 n—|—l n— n—f—l n—
F)J 2 F)J 2 EJ 2 + EJ 2 F)J 2 + F)J 2
T = €0€g =
At 2 2



(Petropolous1994) showed that for the Yee scheme applied to the
Maxwell-Debye, the discrete dispersion relation can be written

w2

C—§€A(w) = KA

where the discrete complex permittivity is given by
() = too 1
ea(w) =¢€ €q| ———
A o d 14+ iwaTA
with discrete (mis-)representations of w and 7 given by

_sin(wAt/2)

= = At/2)T.
WA At TA = sec(wAt/2)T



The quantity Ka is given by

_sin(kAz/2)
AT Az

in 1D and is related to the symbol of the discrete first order spatial
difference operator by
iKn = F(D1,az)-

In this way, we see that the left hand side of the discrete dispersion relation

w2

A 2
2 alw) =Ka
is unchanged when one moves to higher order spatial derivative
approximations [Bokil-G,2012] or even higher spatial dimension

[Bokil-G,2013].
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The discretization of the PC system

Ad+a=f

is performed similarly to the deterministic system in order to preserve
second order accuracy. Applying second order central differences at

ay = d(tn, z):
gt gtiat et
A + = : (4)
At 2 2
Couple this with the equations from above:
n—&—l n—1 Hn — H" n—f—l n—1
e T G T T %) %y (g
0% ™At Az At
HM — HP ne s
T L R Sl 5b
PO At - Az (55)
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Energy decay implies that the method is stable and hence convergent.

1 o
Forn>0, letU" =[H" 2, EP E". ol ,...,a0 ... T be the solutions of
0,x? ) 20,y

) Exo0 =y

the 2D Maxwell-PC Debye TE FDTD scheme with PEC boundary
conditions. If the usual CFL condition for Yee scheme is satisfied
CooAt < h/+\/2, then there exists the energy decay property

+1
et
where the discrete energy is given by

1
\/€0€Ed

2
al| .
o'

—all2 .
(682 = || iR + Iveseerl + |

Note: ||P|[z = E[l|P|3] = E[P]* + Var(P)|13 ~ ||all3.



Dispersion Analysis

Theorem (G., 2013)

The discrete dispersion relation for the Maxwell-PC Debye FDTD scheme
in (4) and (5) is given by

where the discrete expected complex permittivity is given by
en(w) = €0 + 48] (I + iwpAn) "t &
and the discrete PC matrix is given by
Ap = sec(wAt/2)A.

The definitions of the parameters wa and Ka are the same as before.
Recall the exact complex permittivity is given by
1
= + e4E —.
e(w) = oo+ € [1 + iwT ]
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We define the phase error ® for a scheme applied to a model to be

kex — ka

b =
kex

; (6)

where the numerical wave number ka is implicitly determined by the
corresponding dispersion relation and kgx is the exact wave number for
the given model.

@ We assume a uniform distribution and the following parameters which
are appropriate constants for modeling aqueous Debye type materials:

€o=1 € =782 Tm=81x10""2sec, 7, =0.5mm.
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Figure: Plots of phase error at § = 0 for (left column) 7, = 0.57,,,, (right
column) 7, = 0.97,,, using h, = 0.01.
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Figure: Plots of phase error at § = 0 for (left column) 7, = 0.57,,,, (right
column) 7, = 0.97,,, using h,; = 0.001.



PC-Debye dispersion for FD with hT:O.01, r=0.5t, (m:p:1 PC-Debye dispersion for FD with hr:0.01, r=0.91, oyc”:1
—_—M=0 M=0
== =M=1 M=1

== M=2 M=2
—M=3 M=3
M=4
M=5
M=6

o

Figure: Log plots of phase error versus 6 with fixed w = 1/7,, for (left column)
7 = 0.57, (right column) 7, = 0.97,,,, using h. = 0.01. Legend indicates degree
M of the PC expansion.
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Figure: Log plots of phase error versus 6 with fixed w = 1/7,, for (left column)

7, = 0.57, (right column) 7, = 0.97,,,, using h, = 0.001. Legend indicates
degree M of the PC expansion.




@ Conclusions



@ We have presented a random ODE model for polydispersive Debye
media

@ We described an efficient numerical method utilizing polynomial
chaos (PC) and finite difference time domain (FDTD)

@ We have shown (conditional) stability of the scheme via energy decay

@ We have used a discrete dispersion relation to compute phase errors
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