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PC for MM Dispersive Maxwell System

Maxwell’s Equations

∂B

∂t
+∇× E = 0, in (0,T )×D (Faraday)

∂D

∂t
+ J−∇×H = 0, in (0,T )×D (Ampere)

∇ ·D = ∇ · B = 0, in (0,T )×D (Poisson/Gauss)

E(0, x) = E0; H(0, x) = H0, in D (Initial)

E× n = 0, on (0,T )× ∂D (Boundary)

E = Electric field vector

H = Magnetic field vector

J = Current density

D = Electric flux density

B = Magnetic flux density

n = Unit outward normal to ∂D
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PC for MM Dispersive Maxwell System

Constitutive Laws

D = εE + P

B = µH + M

J = σE + Js

P = Polarization

M = Magnetization

Js = Source Current

ε = Electric permittivity

µ = Magnetic permeability

σ = Electric Conductivity

where ε = ε0ε∞ and µ = µ0µr .
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PC for MM Dispersive Maxwell System

Polarization

The polarization is defined as the average dipole moment in a material.

For linear materials we can define P in terms of a convolution with E

P(t, x) = g ∗ E(t, x) =

∫ t

0
g(t − s, x; q)E(s, x)ds,

where g is the dielectric response function (DRF) and q is a vector
which contains all of the necessary dielectric parameters for a model.

In the frequency domain

D̂ = εÊ + ĝÊ = ε0ε(ω)Ê,

where ε(ω) is called the complex permittivity.
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PC for MM Dispersive Maxwell System

Saltwater Data

Figure: Fits for single-pole, saltwater data [Querry et al., 1972]1

1J. Alvarez, A. Fisher, N. L. Gibson, “Approximating Dispersive Materials With
Parameter Distributions in the Lorentz Model”, Applied Mathematics, Modeling and
Computational Science 2019 Proceedings, 11 pages. To appear.
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PC for MM Dispersive Maxwell System

Relaxation Polarization Models

P(t, x) = g ∗ E(t, x) =

∫ t

0
g(t − s, x; q)E(s, x)ds,

Debye model [1913] q = [ε∞, εd , τ ]

g(t, x) = ε0εd/τ e−t/τ

or τ Ṗ + P = ε0εdE

or ε(ω) = ε∞ +
εd

1 + iωτ

with εd := εs − ε∞ and τ a relaxation time.

Cole-Cole model [1941] (heuristic generalization)
q = [ε∞, εd , τ, α]

ε(ω) = ε∞ +
εd

1 + (iωτ)α
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PC for MM Dispersive Maxwell System

Polynomial Chaos for Random Debye

1 The Cole-Cole model corresponds to a fractional order ODE in the
time-domain and is difficult to simulate.

2 Debye is efficient to simulate, but does not represent permittivity well.

3 We showed2 that applying Polynomial Chaos to the Random Debye
model preserves the efficiency of Debye with the fidelity of Cole-Cole.

4 Stability estimates for the continuous and discrete system were
shown, and dispersion analyses were performed.

5 The inverse problem for the distribution of parameters was also
addressed. 3

2N. L. Gibson, “Polynomial Chaos for Dispersive Electromagnetics”,
Communications in Computational Physics, 18 (5), 1234–1263, 2015.

3M. Armentrout and N. L. Gibson,“Electromagnetic Relaxation Time Distribution
Inverse Problems in the Time-Domain”, Proceedings, WAVES 2011, 245–248, 2011.
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PC for MM Maxwell-Random Lorentz System

Lorentz Polarization Model

Lorentz model in Auxiliary Differential Equation (ADE) form:

P̈ + 2νṖ + ω2
0P = ε0ω

2
pE

where ω0 is the resonant frequency, ν is a damping coefficient, and ωp is
referred to as a plasma frequency.

Taking a Fourier transform of D = εE + P, we get

ε(ω) = ε∞ +
ω2
p

ω2
0 − ω2 − i2νω

with q = [ε∞, ω0, ν, ωp].
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Distributions of Parameters

To account for the effect of distributions of parameters q in a polarization
model, consider the following polydispersive DRF

h(t, x;F ) =

∫
Q
g(t, x; q)dF (q),

where Q is some admissible set and F ∈ P(Q).
Then the polarization becomes:

P(t, x;F ) =

∫ t

0
h(t − s, x;F )E(s, x)ds.

Alternatively we can define the random polarization P(t, x; q) to satisfy

P = g(t, x; q) ∗ E

but with q random; the macroscopic polarization is then taken to be the
expected value of the random polarization,

P(t, x;F ) =

∫
Q
P(t, x; q)dF (q).
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Random Lorentz Polarization

We allow the parameter ω2
0 be a random variable with probability

distribution F on the interval (a, b). Then the random Lorentz model in
ADE form is

P̈ + 2νṖ + ω2
0P = ε0ω

2
pE

The macroscopic polarization is then taken to be the expected value of the
random polarization,

P(t, x) =

∫ b

a
P(t, x;ω2

0) dF (ω2
0).
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PC for MM Maxwell-Random Lorentz System

Saltwater Data

Figure: Real part of ε(ω) fits for single-pole, saltwater data [1].
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Saltwater Data

Figure: Imaginary part of ε(ω)/ω, fits for single-pole, saltwater data [1].
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Maxwell-Random Lorentz system

Combining with Maxwell’s equations, we have

µ0
∂H

∂t
= −∇× E (1a)

ε0ε∞
∂E

∂t
= ∇×H− ∂P

∂t
(1b)

P̈ + 2νṖ + ω2
0P = ε0ω

2
pE (1c)

with

P(t, x) =

∫ b

a

P(t, x;ω2
0)f (ω

2
0)dω

2
0.
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PC for MM Maxwell-Random Lorentz System

2D Maxwell-Random Lorentz Transverse Electric (TE) curl equations

µ0
∂H

∂t
= −curl E, (2a)

ε0ε∞
∂E

∂t
= curl H − J, (2b)

∂P
∂t

= J (2c)

∂J
∂t

= −2νJ − ω2
0P + ε0ω

2
pE (2d)

where E = (Ex ,Ey )T , J = (Jx , Jy )T = E[J ], J = (Jx ,Jy )T ,
P = (Px ,Py )T and H = Hz .

Note curl U =
∂Uy

∂x −
∂Ux
∂y and curl V =

(
∂V
∂y ,−

∂V
∂x

)T
.
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PC for MM Maxwell-Random Lorentz System

We introduce the random Hilbert space VF = (L2(Ω)⊗ L2(D))2 equipped
with an inner product and norm as follows

(u, v)F = E[(u, v)2],

‖u‖2
F = E[‖u‖2

2].

The weak formulation of the 2D Maxwell-Random Lorentz TE system is(
µ0
∂H

∂t
, v

)
2

= (−curl E, v)2 (3a)(
ε0ε∞

∂E

∂t
,u

)
2

= (curl H,u)2 − (J,u)2 (3b)(
∂P
∂t
,q

)
F

= (J ,q)F (3c)(
∂J
∂t

,w

)
F

= (−2νJ ,w)F +
(
−ω2

0P,w
)
F

+
(
ε0ω

2
pE,w

)
F
. (3d)

for v ∈ L2(D), u ∈ H0(curl,D)2, and q,w ∈ VF .
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We have the following result4

Theorem (Stability of Maxwell-Random Lorentz)

Let D ⊂ R2 and suppose that E ∈ C (0,T ;H0(curl,D)) ∩ C 1(0,T ; (L2(D))2),

P,J ∈ C 1(0,T ;
(
L2(Ω)⊗ L2(D)

)2
), and H(t) ∈ C 1(0,T ; L2(D)) are solutions of

the weak formulation for the Maxwell-Random Lorentz system along with PEC
boundary conditions. Then the system exhibits energy decay

E(t) ≤ E(0) ∀t ≥ 0,

where the energy E(t) is defined as

E(t)2 =
∥∥∥√µ0 H(t)

∥∥∥2

2
+
∥∥∥√ε0ε∞ E(t)

∥∥∥2

2
+
∥∥∥√ ω2

0

ε0ω2
p

P(t)
∥∥∥2

F
+
∥∥∥ 1√

ε0ω2
p

J (t)
∥∥∥2

F

where ‖u‖2
F = E[‖u‖2

2] and J := ∂P
∂t .

4A. Fisher, J. Alvarez, N. L. Gibson,“Analysis of Methods for the Maxwell-Random
Lorentz Model”, Results in Applied Mathematics, vol. 8, 1–17, 2020.
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Proof: (for 2D)

By choosing v = H, u = E, q = P and w = J in the weak form, and
adding all equations into the time derivative of the definition of E2, we
obtain

1

2

dE2(t)

dt
=−

(
curl E,H

)
2

+
(
H, curl E

)
2
−
(

J,E
)

2
+

(
ω2

0

ε0ω2
p

J ,P
)

F

−
(

2ν

ε0ω2
p

J ,J
)

F

−
(
ω2

0

ε0ω2
p

P,J
)

F

+ (E,J )F

= −
∥∥∥√ 2ν

ε0ω2
p

J
∥∥∥2

F

dE(t)

dt
=
−1

E(t)

∥∥∥∥∥
√

2ν

ε0ω2
p

J

∥∥∥∥∥
2

F

≤ 0.
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Polynomial Chaos

Let ω2
0 = rξ + m and ξ ∈ [−1, 1]. Suppressing the dimension of P and the

spatial dependence, we have

P(ξ, t) =
∞∑
i=0

αi (t)φi (ξ)→ P̈ + 2νṖ + (rξ + m)P = ε0ω
2
pE .

Utilizing the Triple Recursion Relation for orthogonal polynomials:

ξφn(ξ) = anφn+1(ξ) + bnφn(ξ) + cnφn−1(ξ),

the differential equation becomes

∞∑
i=0

[α̈i (t) + 2να̇i (t) + mαi (t)]φi+rαi (t) [aiφi+1 + biφi + ciφi−1] = ε0ω
2
pEφ0.

N. L. Gibson (OSU) UQ for MM and DR OSU MATH 2020 22 / 51
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Galerkin Projection

We apply a Galerkin Projection onto the space of polynomials of degree at
most p to get:

~̈α + 2ν~̇α + A~α = ~f

where ~f = ê1ε0ω
2
pE and

A = rM + mI , M =



b0 c1 0 · · · 0

a0 b1 c2
...

0
. . .

. . .
. . . 0

... ap−2 bb−1 cp
0 · · · 0 ap−1 bp


.

Or we can write as a first order system:

~̇α = ~β

~̇β = −A~α− 2ν~β + ~f .
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Theorem (Energy Decay for Maxwell-PC Lorentz-FDTD)

If the CFL condition is satisfied, then the Yee scheme for the 2D TE mode
Maxwell-Polynomial Chaos-Lorentz system satisfies the discrete identity

δtE
n+ 1

2

h =
−1

En+ 1
2

h

∥∥∥∥∥
√

2ν

ε0ω2
p

~β
n+ 1

2

∥∥∥∥∥
2

α

for all n where

Enh =

µ0(Hn+ 1
2 ,Hn− 1

2 )H + ‖
√
ε0ε∞ En‖2

E +

∥∥∥∥∥∥ A1/2√
ε0ω2

p

~αn

∥∥∥∥∥∥
2

α

+

∥∥∥∥∥
√

1

ε0ω2
p

~β
n

∥∥∥∥∥
2

α


1/2

defines a discrete energy.

Note that ‖~α‖2
α ≈ ‖E[P]‖2

2 + ‖StdDev(P)‖2
2 = E[‖P‖2

2] = ‖P‖2
F so that this is a

natural extension of the Maxwell-Random Lorentz energy.4

4A. Fisher, J. Alvarez, N. L. Gibson,“Analysis of Methods for the Maxwell-Random
Lorentz Model”, Results in Applied Mathematics, vol. 8, 1–17, 2020.
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PC for MM Maxwell-Random Lorentz System

Theorem

The discrete dispersion relation for the Maxwell-PC FDTD Lorentz scheme
is given by

ω2
∆

c2
ε∆(ω) = K 2

∆

where the discrete expected complex permittivity is given by

ε∆(ω) := ε∞ + ω2
p,∆êT1

(
A∆ − ω2

∆I − i2ν∆ω∆I
)−1

ê1

and the discrete wavenumber and quantity K∆ are given by

k∆ :=
√
k2
x ,∆ + k2

y ,∆, K∆ :=
√
K 2
x ,∆ + K 2

y ,∆,

with

Kx ,∆ :=
2

∆x
sin

(
kx ,∆∆x

2

)
, Ky ,∆ :=

2

∆y
sin

(
ky ,∆∆y

2

)
. . .
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PC for MM Maxwell-Random Lorentz System

Theorem (Continued)

and the discrete PC matrix and discrete damping are given by

A∆ := cos2(ω∆t/2)A, ν∆ := cos

(
ω∆t

2

)
ν.

Similarly,

ω∆ :=
2

∆t
sin

(
ω∆t

2

)
, ωp,∆ := cos

(
ω∆t

2

)
ωp.

N. L. Gibson (OSU) UQ for MM and DR OSU MATH 2020 26 / 51



PC for MM Viscoelastic Materials

Outline

1 Polynomial Chaos for Multiscale Modeling
Dispersive Maxwell System
Maxwell-Random Lorentz System
Viscoelastic Materials
Magnetohydrodynamics
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PC for Viscoelastic Volterra Kernels

The shear stress, σ, in a linear viscoelastic body is given as the following
functional of shear strain, ε:

σ(t) = µ(t)ε(0) +

∫ t

0
µ(t − s)ε̇(s) ds (5)

where µ is a stress relaxation function, often of exponential form.
However, many real materials can be observed to relax slower than
exponentially. For this reason a power law dependence is often preferred
wherein µ(t) = µ0t

−α for µ0 > 0 and α ∈ (0, 1).
The disadvantage with this is that there is no local form of an ADE, the
entire past history must be preserved when simulating. 5

5N. L. Gibson and S. Shaw, “Polynomial Chaos for Viscoelastic Volterra Kernels”, in
preparation.
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Figure: Comparison of simulations of power law Volterra kernel vs continuous
spectrum with Polynomial Chaos.
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Magnetohydrodynamics (MHD)

MHD = Maxwell + Navier-Stokes

Collaborators

Rigel Woodside, NETL Albany

Duncan McGregor, ORISE Fellow, 9/2014–6/2016

Evan Rajbhandari, ORISE Fellow, 7/2020–6/2022

Vrushali Bokil (PI), NSF-DMS Computational Mathematics,
8/1/2020–7/31/2022
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PC for Hall MHD

Ohm’s Law becomes

J = σ(E + u× B) + βe(J× B)

where u is the velocity, and βe = ωeτe is the Hall parameter.

J = σ(E + u× B),

where

σ = σ


1

1+ω2
e τ

2
e

−ωeτe
1+ω2

e τ
2
e

0
ωeτe

1+ω2
e τ

2
e

1
1+ω2

e τ
2
e

0

0 0 1


Compare to

ε(ω) = ε∞ + εd
1

1 + ω2τ2
+ εd

ωτ

1 + ω2τ2
i.
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KL for DR Reservoir Operations

Reservoir Operations

The broad context of the problem of interest is a PDE-constrained optimal
control problem with uncertainty. In particular, one must

maximize revenue (minimize cost to the consumer)

minimize ecological violations

meet electrical demand with hydro-power production

at least 9 other constraints

N. L. Gibson (OSU) UQ for MM and DR OSU MATH 2020 36 / 51



KL for DR Reservoir Operations

Simulation of Unsteady Flows

Most free surface flows are unsteady and nonuniform.

Unsteady flows in river systems are most efficiently simulated using 1D
models.

Saint-Venant equations: PDEs representing conservation of mass and
momentum for a control volume:

B
∂y

∂t
+
∂Q

∂x
= 0, (6)

∂Q

∂t
+

∂

∂x

(
Q2

A

)
+ gA

(
∂y

∂x
+ Sf − S0

)
= 0, (7)

where x is a distance along the channel in the longitudinal direction, t is time,
y is a water depth, Q is a flow discharge,
B is a width of the channel, g is an acceleration due to gravity,
A is a cross-sectional area of the flow, Sf is a friction slope, S0 is a river bed slope.

Initial, boundary and interface conditions are required to close the system.
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Big 10 Columbia River System

Unknowns: flow discharges Qi for i = 1, . . . , 10.
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Dimension Reduction

Simulations are required to be two weeks in duration.
Solving for decision variables on each time step (daily or hourly) is
computationally impractical.
We wish to construct a reduced dimensional basis for the decisions.
Fortunately there exist years worth of data.
We solve only for the optimal coefficients of an expansion in this basis
(Spectral Optimization Method6).
Specifically, we construct a truncated Karhunen-Loeve (KL)
expansion (or PCA) using the historical solutions

Q(tj , ~ξ) = Q̄(tj) +
M∑
k=1

√
λkψk(tj)ξk

and optimize over ξk , k = 1 . . .M.
6D. Chen, A. S. Leon, N. L. Gibson, P. Hosseini, “Dimension reduction of decision

variables for multi-reservoir operation: A spectral optimization model”, Water Resources
Research, 52 (1), 36–51, 2016.
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Grand Coulee outflows

Figure: Synthetic data for outflows at Grand Coulee.
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Grand Coulee KL Expansion

Figure: Eigenvalues and eigenvectors of the covariance matrix for Grand Coulee.
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Optimization Results

Figure: Goodness of multi-objective optimization results with various reduced
dimension decision spaces.
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Probabilistic Load Flow (PLF) problem

A load flow analysis tests the reliability of the power grid under
various supply and demand scenarios.

Probabilistic Load Flow allows for each supply source and/or demand
location to be a random variable.

These are typically solved via Monte-Carlo methods or so-called
convolution methods.
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Probabilistic Load Flow (PLF) problem (continued)

Our approach7: treat all of the solar power sources as spatial points
within one underlying stochastic process.

KL expansion results in 194 dependent random variables reduced to
12 uncorrelated random variables.

Enables Anisotropic Sparse Grid Interpolation (Stochastic Collocation)

7B. Johnson, N. L. Gibson and E. Cotilla-Sanchez, “A Coupled Karhunen-Loève and
Anisotropic Sparse Grid Interpolation Method for the Probabilistic Load Flow Problem”,
Electric Power Systems Research, 24 pages. Accepted, to appear.
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KL for DR Power Grid

Anisotropic Sparse Grid

Figure: Demonstration of full tensor grid, sparse grid, and anisotropic sparse grid.
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KL for DR Power Grid

PLF Results

Figure: Voltage magnitude CDF at Bus 93 in the IEEE 118-Bus system.
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Outline

1 Polynomial Chaos for Multiscale Modeling
Dispersive Maxwell System
Maxwell-Random Lorentz System
Viscoelastic Materials
Magnetohydrodynamics

2 Karhunen-Loève for Dimension Reduction
Reservoir Operations
Power Grid
Tsunami Loading
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KL for DR Tsunami Loading

Tsunami Loading

In collaboration with Ben Mason and Yingqing Qiu (Civil Engineering)

We have applied KL expansions to an uncertain hydraulic conductivity
for a numerical soil model under wave loading.
We compared Stochastic Finite Element Method to Stochastic
Collocation and Monte Carlo.
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KL for DR Tsunami Loading

Tsunami Loading Inverse Problem

Determine the coefficients of a KL expansion for an unknown
hydraulic conductivity given measurements of pressure.

Data obtained from Hinsdale wave lab experiment.

20 dimensions reduced to 6; 50 Newton iterations reduced to 15.
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Summary

Summary

KL expansions used for dimension reduction

Forward problems in power flow and wave loading
Optimal control for reservior modeling
Parameter estimation for wave loading

PC expansions used for multiscale modeling
Random Lorentz polarization

Well-posedness (Continuous and Discrete)
Dispersion analysis

Viscoelastic relaxation
Toward Hall MHD
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