Uncertainty Quantification Methods for Multiscale Modeling and Dimension Reduction

Nathan L. Gibson

Associate Professor Department of Mathematics

OSU Mathematics Colloquium November 9, 2020

N. L. Gibson (OSU)

Polynomial Chaos for Multiscale Modeling

- Dispersive Maxwell System
- Maxwell-Random Lorentz System
- Viscoelastic Materials
- Magnetohydrodynamics

- Reservoir Operations
- Power Grid
- Tsunami Loading

Polynomial Chaos for Multiscale Modeling

- Dispersive Maxwell System
- Maxwell-Random Lorentz System
- Viscoelastic Materials
- Magnetohydrodynamics

- Reservoir Operations
- Power Grid
- Tsunami Loading

Polynomial Chaos for Multiscale Modeling

- Dispersive Maxwell System
- Maxwell-Random Lorentz System
- Viscoelastic Materials
- Magnetohydrodynamics

- Reservoir Operations
- Power Grid
- Tsunami Loading

Maxwell's Equations

$$\begin{aligned} \frac{\partial \mathbf{B}}{\partial t} + \nabla \times \mathbf{E} &= \mathbf{0}, \text{ in } (0, T) \times \mathcal{D} & (Faraday) \\ \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J} - \nabla \times \mathbf{H} &= \mathbf{0}, \text{ in } (0, T) \times \mathcal{D} & (Ampere) \\ \nabla \cdot \mathbf{D} &= \nabla \cdot \mathbf{B} &= 0, \text{ in } (0, T) \times \mathcal{D} & (Poisson/Gauss) \\ \mathbf{E}(0, \mathbf{x}) &= \mathbf{E}_{\mathbf{0}}; \ \mathbf{H}(0, \mathbf{x}) &= \mathbf{H}_{\mathbf{0}}, \text{ in } \mathcal{D} & (Initial) \\ \mathbf{E} \times \mathbf{n} &= \mathbf{0}, \text{ on } (0, T) \times \partial \mathcal{D} & (Boundary) \end{aligned}$$

- **E** = Electric field vector
- **H** = Magnetic field vector
- J = Current density n = Uni
- **D** = Electric flux density
- **B** = Magnetic flux density
 - $\mathbf{n} = -$ Unit outward normal to $\partial \mathcal{D}$

N. L. Gibson (OSU)

Constitutive Laws

$$\mathbf{D} = \epsilon \mathbf{E} + \mathbf{P}$$
$$\mathbf{B} = \mu \mathbf{H} + \mathbf{M}$$
$$\mathbf{J} = \sigma \mathbf{E} + \mathbf{J}_s$$

- $\mathbf{P} =$ Polarization Electric permittivity $\epsilon =$
- $M = Magnetization \mu =$
- $J_s =$ Source Current $\sigma =$
- Magnetic permeability
 - **Electric Conductivity**

where $\epsilon = \epsilon_0 \epsilon_\infty$ and $\mu = \mu_0 \mu_r$.

The polarization is defined as the average dipole moment in a material.

• For linear materials we can define P in terms of a convolution with E

$$\mathbf{P}(t,\mathbf{x}) = g * \mathbf{E}(t,\mathbf{x}) = \int_0^t g(t-s,\mathbf{x};\mathbf{q})\mathbf{E}(s,\mathbf{x})ds,$$

where g is the dielectric response function (DRF) and \mathbf{q} is a vector which contains all of the necessary dielectric parameters for a model.

• In the frequency domain

$$\mathbf{\hat{D}} = \epsilon \mathbf{\hat{E}} + \mathbf{\hat{g}}\mathbf{\hat{E}} = \epsilon_0 \epsilon(\omega)\mathbf{\hat{E}},$$

where $\epsilon(\omega)$ is called the complex permittivity.

Saltwater Data

Figure: Fits for single-pole, saltwater data [Querry et al., 1972]¹

¹J. Alvarez, A. Fisher, **N. L. Gibson**, "Approximating Dispersive Materials With Parameter Distributions in the Lorentz Model", Applied Mathematics, Modeling and Computational Science 2019 Proceedings, 11 pages. *To appear.*

N. L. Gibson (OSU)

UQ for MM and DR

Relaxation Polarization Models

$$\mathbf{P}(t,\mathbf{x}) = g * \mathbf{E}(t,\mathbf{x}) = \int_0^t g(t-s,\mathbf{x};\mathbf{q})\mathbf{E}(s,\mathbf{x})ds,$$

• Debye model [1913] $\mathbf{q} = [\epsilon_{\infty}, \epsilon_d, \tau]$

$$g(t, \mathbf{x}) = \epsilon_0 \epsilon_d / \tau \ e^{-t/\tau}$$

or $\tau \dot{\mathbf{P}} + \mathbf{P} = \epsilon_0 \epsilon_d \mathbf{E}$
or $\epsilon(\omega) = \epsilon_\infty + \frac{\epsilon_d}{1 + i\omega\tau}$

with $\epsilon_d := \epsilon_s - \epsilon_\infty$ and τ a relaxation time.

• Cole-Cole model [1941] (heuristic generalization) $\mathbf{q} = [\epsilon_{\infty}, \epsilon_d, \tau, \alpha]$ $\epsilon(\omega) = \epsilon_{\infty} + \frac{\epsilon_d}{1 + (i\omega\tau)^{\alpha}}$

Polynomial Chaos for Random Debye

- The Cole-Cole model corresponds to a fractional order ODE in the time-domain and is difficult to simulate.
- **2** Debye is efficient to simulate, but does not represent permittivity well.
- We showed² that applying Polynomial Chaos to the Random Debye model preserves the efficiency of Debye with the fidelity of Cole-Cole.
- Stability estimates for the continuous and discrete system were shown, and dispersion analyses were performed.
- The inverse problem for the distribution of parameters was also addressed.³

N. L. Gibson (OSU)

²N. L. Gibson, "Polynomial Chaos for Dispersive Electromagnetics", Communications in Computational Physics, 18 (5), 1234–1263, 2015.

³M. Armentrout and **N. L. Gibson**, "Electromagnetic Relaxation Time Distribution Inverse Problems in the Time-Domain", Proceedings, WAVES 2011, 245–248, 2011.

Polynomial Chaos for Multiscale Modeling

Dispersive Maxwell System

Maxwell-Random Lorentz System

- Viscoelastic Materials
- Magnetohydrodynamics

- Reservoir Operations
- Power Grid
- Tsunami Loading

Lorentz model in Auxiliary Differential Equation (ADE) form:

$$\ddot{\mathbf{P}} + 2\nu \dot{\mathbf{P}} + \omega_0^2 \mathbf{P} = \epsilon_0 \omega_\rho^2 \mathbf{E}$$

where ω_0 is the resonant frequency, ν is a damping coefficient, and ω_p is referred to as a plasma frequency.

Taking a Fourier transform of $\mathbf{D} = \epsilon \mathbf{E} + \mathbf{P}$, we get

$$\epsilon(\omega) = \epsilon_{\infty} + \frac{\omega_p^2}{\omega_0^2 - \omega^2 - i2\nu\omega}$$

with $\mathbf{q} = [\epsilon_{\infty}, \omega_0, \nu, \omega_p]$.

Distributions of Parameters

To account for the effect of distributions of parameters \mathbf{q} in a polarization model, consider the following *polydispersive* DRF

$$h(t,\mathbf{x};F) = \int_{\mathcal{Q}} g(t,\mathbf{x};\mathbf{q}) dF(\mathbf{q}),$$

where Q is some admissible set and $F \in \mathfrak{P}(Q)$. Then the polarization becomes:

$$\mathbf{P}(t,\mathbf{x};F) = \int_0^t h(t-s,\mathbf{x};F)\mathbf{E}(s,\mathbf{x})ds.$$

Alternatively we can define the random polarization $\mathcal{P}(t, \mathbf{x}; \mathbf{q})$ to satisfy

$$\mathcal{P} = g(t, \mathbf{x}; \mathbf{q}) * \mathbf{E}$$

but with \mathbf{q} random; the macroscopic polarization is then taken to be the expected value of the random polarization,

$$\mathbf{P}(t,\mathbf{x};F) = \int_{\mathcal{Q}} \mathcal{P}(t,\mathbf{x};\mathbf{q}) dF(\mathbf{q}).$$

Random Lorentz Polarization

We allow the parameter ω_0^2 be a random variable with probability distribution *F* on the interval (a, b). Then the random Lorentz model in ADE form is

$$\ddot{\mathcal{P}} + 2\nu\dot{\mathcal{P}} + \omega_0^2 \mathcal{P} = \epsilon_0 \omega_\rho^2 E$$

The macroscopic polarization is then taken to be the expected value of the random polarization,

$$\mathbf{P}(t,\mathbf{x}) = \int_{a}^{b} \mathcal{P}(t,\mathbf{x};\omega_{0}^{2}) \, dF(\omega_{0}^{2}).$$

Saltwater Data

Figure: Real part of $\epsilon(\omega)$ fits for single-pole, saltwater data [1].

Saltwater Data

Figure: Imaginary part of $\epsilon(\omega)/\omega$, fits for single-pole, saltwater data [1].

Maxwell-Random Lorentz system

Combining with Maxwell's equations, we have

$$\mu_0 \frac{\partial \mathbf{H}}{\partial t} = -\nabla \times \mathbf{E} \tag{1a}$$

$$\epsilon_0 \epsilon_\infty \frac{\partial \mathbf{E}}{\partial t} = \nabla \times \mathbf{H} - \frac{\partial \mathbf{P}}{\partial t}$$
(1b)

$$\ddot{\mathcal{P}} + 2\nu \dot{\mathcal{P}} + \omega_0^2 \mathcal{P} = \epsilon_0 \omega_\rho^2 \mathbf{E}$$
(1c)

with

$$\mathbf{P}(t,\mathbf{x}) = \int_{a}^{b} \mathcal{P}(t,\mathbf{x};\omega_{0}^{2})f(\omega_{0}^{2})d\omega_{0}^{2}.$$

2D Maxwell-Random Lorentz Transverse Electric (TE) curl equations

$$\mu_0 \frac{\partial H}{\partial t} = -\text{curl } \mathbf{E},\tag{2a}$$

$$\epsilon_0 \epsilon_\infty \frac{\partial \mathbf{E}}{\partial t} = \operatorname{curl} \, H - \mathbf{J},\tag{2b}$$

$$\frac{\partial \mathcal{P}}{\partial t} = \mathcal{J} \tag{2c}$$

$$\frac{\partial \mathcal{J}}{\partial t} = -2\nu \mathcal{J} - \omega_0^2 \mathcal{P} + \epsilon_0 \omega_p^2 \mathbf{E}$$
(2d)

where
$$\mathbf{E} = (E_x, E_y)^T$$
, $\mathbf{J} = (J_x, J_y)^T = \mathbb{E}[\mathcal{J}]$, $\mathcal{J} = (\mathcal{J}_x, \mathcal{J}_y)^T$,
 $\mathcal{P} = (\mathcal{P}_x, \mathcal{P}_y)^T$ and $H = H_z$.
Note curl $\mathbf{U} = \frac{\partial U_y}{\partial x} - \frac{\partial U_x}{\partial y}$ and **curl** $V = \left(\frac{\partial V}{\partial y}, -\frac{\partial V}{\partial x}\right)^T$.

We introduce the random Hilbert space $V_F = (L^2(\Omega) \otimes L^2(\mathcal{D}))^2$ equipped with an inner product and norm as follows

$$(\mathbf{u}, \mathbf{v})_F = \mathbb{E}[(\mathbf{u}, \mathbf{v})_2],$$

 $\|\mathbf{u}\|_F^2 = \mathbb{E}[\|\mathbf{u}\|_2^2].$

The weak formulation of the 2D Maxwell-Random Lorentz TE system is

$$\left(\mu_0 \frac{\partial H}{\partial t}, \mathbf{v}\right)_2 = (-\text{curl } \mathbf{E}, \mathbf{v})_2$$
(3a)

$$\left(\epsilon_0 \epsilon_\infty \frac{\partial \mathbf{E}}{\partial t}, \mathbf{u}\right)_2 = (\mathbf{curl} \ H, \mathbf{u})_2 - (\mathbf{J}, \mathbf{u})_2$$
(3b)

$$\left(\frac{\partial \mathcal{P}}{\partial t}, \mathbf{q}\right)_{F} = \left(\mathcal{J}, \mathbf{q}\right)_{F}$$
(3c)

$$\left(\frac{\partial \mathcal{J}}{\partial t}, \mathbf{w}\right)_{F} = (-2\nu \mathcal{J}, \mathbf{w})_{F} + \left(-\omega_{0}^{2} \mathcal{P}, \mathbf{w}\right)_{F} + \left(\epsilon_{0} \omega_{p}^{2} \mathbf{E}, \mathbf{w}\right)_{F}.$$
 (3d)

for $v \in L^2(\mathcal{D})$, $\mathbf{u} \in H_0(\operatorname{curl}, \mathcal{D})^2$, and $\mathbf{q}, \mathbf{w} \in V_F$.

We have the following result⁴

Theorem (Stability of Maxwell-Random Lorentz)

Let $\mathcal{D} \subset \mathbb{R}^2$ and suppose that $\mathbf{E} \in C(0, T; H_0(\operatorname{curl}, \mathcal{D})) \cap C^1(0, T; (L^2(\mathcal{D}))^2)$, $\mathcal{P}, \mathcal{J} \in C^1(0, T; (L^2(\Omega) \otimes L^2(\mathcal{D}))^2)$, and $H(t) \in C^1(0, T; L^2(\mathcal{D}))$ are solutions of the weak formulation for the Maxwell-Random Lorentz system along with PEC boundary conditions. Then the system exhibits energy decay

 $\mathcal{E}(t) \leq \mathcal{E}(0) \ \forall t \geq 0,$

where the energy $\mathcal{E}(t)$ is defined as

$$\mathcal{E}(t)^{2} = \left\|\sqrt{\mu_{0}} H(t)\right\|_{2}^{2} + \left\|\sqrt{\epsilon_{0}\epsilon_{\infty}} \mathbf{E}(t)\right\|_{2}^{2} + \left\|\sqrt{\frac{\omega_{0}^{2}}{\epsilon_{0}\omega_{p}^{2}}} \mathcal{P}(t)\right\|_{F}^{2} + \left\|\frac{1}{\sqrt{\epsilon_{0}\omega_{p}^{2}}} \mathcal{J}(t)\right\|_{F}^{2}$$
where $\|u\|_{F}^{2} = \mathbb{E}[\|u\|_{2}^{2}]$ and $\mathcal{J} := \frac{\partial \mathcal{P}}{\partial t}$.

⁴A. Fisher, J. Alvarez, **N. L. Gibson**, "Analysis of Methods for the Maxwell-Random Lorentz Model", Results in Applied Mathematics, vol. 8, 1–17, 2020.

N. L. Gibson (OSU)

UQ for MM and DR

Proof: (for 2D)

By choosing v = H, $\mathbf{u} = \mathbf{E}$, $\mathbf{q} = \mathcal{P}$ and $\mathbf{w} = \mathcal{J}$ in the weak form, and adding all equations into the time derivative of the definition of \mathcal{E}^2 , we obtain

$$\frac{1}{2} \frac{d\mathcal{E}^{2}(t)}{dt} = -\left(\operatorname{curl} \mathbf{E}, H\right)_{2} + \left(H, \operatorname{curl} \mathbf{E}\right)_{2} - \left(\mathbf{J}, \mathbf{E}\right)_{2} + \left(\frac{\omega_{0}^{2}}{\epsilon_{0}\omega_{p}^{2}}\mathcal{J}, \mathcal{P}\right)_{F}$$
$$- \left(\frac{2\nu}{\epsilon_{0}\omega_{p}^{2}}\mathcal{J}, \mathcal{J}\right)_{F} - \left(\frac{\omega_{0}^{2}}{\epsilon_{0}\omega_{p}^{2}}\mathcal{P}, \mathcal{J}\right)_{F} + (\mathbf{E}, \mathcal{J})_{F}$$
$$= -\left\|\sqrt{\frac{2\nu}{\epsilon_{0}\omega_{p}^{2}}}\mathcal{J}\right\|_{F}^{2}$$

$$rac{d\mathcal{E}(t)}{dt} = rac{-1}{\mathcal{E}(t)} \left\| \sqrt{rac{2
u}{\epsilon_0 \omega_p^2}} \mathcal{J}
ight\|_F^2 \leq 0.$$

Polynomial Chaos

Let $\omega_0^2 = r\xi + m$ and $\xi \in [-1, 1]$. Suppressing the dimension of \mathcal{P} and the spatial dependence, we have

$$\mathcal{P}(\xi,t) = \sum_{i=0}^{\infty} \alpha_i(t)\phi_i(\xi) \to \ddot{\mathcal{P}} + 2\nu\dot{\mathcal{P}} + (r\xi + m)\mathcal{P} = \epsilon_0\omega_p^2 E.$$

Utilizing the Triple Recursion Relation for orthogonal polynomials:

$$\xi\phi_n(\xi) = a_n\phi_{n+1}(\xi) + b_n\phi_n(\xi) + c_n\phi_{n-1}(\xi),$$

the differential equation becomes

$$\sum_{i=0}^{\infty} \left[\ddot{\alpha}_i(t) + 2\nu\dot{\alpha}_i(t) + m\alpha_i(t)\right]\phi_i + r\alpha_i(t)\left[a_i\phi_{i+1} + b_i\phi_i + c_i\phi_{i-1}\right] = \epsilon_0\omega_p^2 E\phi_0.$$

N. L. Gibson (OSU)

Galerkin Projection

We apply a Galerkin Projection onto the space of polynomials of degree at most p to get:

$$\ddot{\vec{\alpha}} + 2\nu\dot{\vec{\alpha}} + A\vec{\alpha} = \vec{f}$$

where $\vec{f} = \hat{e}_1 \epsilon_0 \omega_p^2 E$ and

$$A = rM + mI, \quad M = \begin{pmatrix} b_0 & c_1 & 0 & \cdots & 0 \\ a_0 & b_1 & c_2 & & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & & a_{p-2} & b_{b-1} & c_p \\ 0 & \cdots & 0 & a_{p-1} & b_p \end{pmatrix}$$

Or we can write as a first order system:

$$\dot{\vec{\alpha}} = \vec{\beta} \dot{\vec{\beta}} = -A\vec{\alpha} - 2\nu\vec{\beta} + \vec{f}.$$

Theorem (Energy Decay for Maxwell-PC Lorentz-FDTD)

If the CFL condition is satisfied, then the Yee scheme for the 2D TE mode Maxwell-Polynomial Chaos-Lorentz system satisfies the discrete identity

$$\delta_t \mathcal{E}_h^{n+\frac{1}{2}} = \frac{-1}{\overline{\mathcal{E}}_h^{n+\frac{1}{2}}} \left\| \sqrt{\frac{2\nu}{\epsilon_0 \omega_p^2}} \vec{\beta}^{n+\frac{1}{2}} \right\|_{\alpha}^2$$

for all n where

$$\mathcal{E}_{h}^{n} = \left(\mu_{0}(\mathcal{H}^{n+\frac{1}{2}}, \mathcal{H}^{n-\frac{1}{2}})_{\mathcal{H}} + \left\|\sqrt{\epsilon_{0}\epsilon_{\infty}} \mathbf{E}^{n}\right\|_{E}^{2} + \left\|\frac{\mathcal{A}^{1/2}}{\sqrt{\epsilon_{0}\omega_{p}^{2}}}\vec{\alpha}^{n}\right\|_{\alpha}^{2} + \left\|\sqrt{\frac{1}{\epsilon_{0}\omega_{p}^{2}}}\vec{\beta}^{n}\right\|_{\alpha}^{2}\right)^{1/2}$$

defines a discrete energy.

Note that $\|\vec{\alpha}\|_{\alpha}^2 \approx \|\mathbb{E}[\mathcal{P}]\|_2^2 + \|\text{StdDev}(\mathcal{P})\|_2^2 = \mathbb{E}[\|\mathcal{P}\|_2^2] = \|\mathcal{P}\|_F^2$ so that this is a natural extension of the Maxwell-Random Lorentz energy.⁴

⁴A. Fisher, J. Alvarez, **N. L. Gibson**, "Analysis of Methods for the Maxwell-Random Lorentz Model", Results in Applied Mathematics, vol. 8, 1–17, 2020.

N. L. Gibson (OSU)

UQ for MM and DR

OSU MATH 2020 24 / 51

Theorem

The discrete dispersion relation for the Maxwell-PC FDTD Lorentz scheme is given by

$$\frac{\omega_{\Delta}^2}{c^2}\epsilon_{\Delta}(\omega) = K_{\Delta}^2$$

where the discrete expected complex permittivity is given by

$$\epsilon_{\Delta}(\omega) := \epsilon_{\infty} + \omega_{\rho,\Delta}^{2} \hat{e}_{1}^{T} \left(A_{\Delta} - \omega_{\Delta}^{2} I - i 2 \nu_{\Delta} \omega_{\Delta} I \right)^{-1} \hat{e}_{1}$$

and the discrete wavenumber and quantity K_{Δ} are given by

$$k_{\Delta} := \sqrt{k_{x,\Delta}^2 + k_{y,\Delta}^2}, \quad K_{\Delta} := \sqrt{K_{x,\Delta}^2 + K_{y,\Delta}^2},$$

with

$$\mathcal{K}_{x,\Delta} := \frac{2}{\Delta x} \sin\left(\frac{k_{x,\Delta}\Delta x}{2}\right), \quad \mathcal{K}_{y,\Delta} := \frac{2}{\Delta y} \sin\left(\frac{k_{y,\Delta}\Delta y}{2}\right)...$$

Theorem (Continued)

and the discrete PC matrix and discrete damping are given by

$$A_{\Delta} := \cos^2(\omega \Delta t/2)A, \quad \nu_{\Delta} := \cos\left(\frac{\omega \Delta t}{2}\right)\nu.$$

Similarly,

$$\omega_{\Delta} := rac{2}{\Delta t} \sin\left(rac{\omega \Delta t}{2}
ight), \quad \omega_{p,\Delta} := \cos\left(rac{\omega \Delta t}{2}
ight) \omega_p.$$

Polynomial Chaos for Multiscale Modeling

- Dispersive Maxwell System
- Maxwell-Random Lorentz System
- Viscoelastic Materials
- Magnetohydrodynamics

- Reservoir Operations
- Power Grid
- Tsunami Loading

The shear stress, σ , in a linear viscoelastic body is given as the following functional of shear strain, ε :

$$\sigma(t) = \mu(t)\varepsilon(0) + \int_0^t \mu(t-s)\dot{\varepsilon}(s) \, ds \tag{5}$$

where μ is a stress relaxation function, often of exponential form. However, many real materials can be observed to relax slower than exponentially. For this reason a *power law* dependence is often preferred wherein $\mu(t) = \mu_0 t^{-\alpha}$ for $\mu_0 > 0$ and $\alpha \in (0, 1)$. The disadvantage with this is that there is no local form of an ADE, the entire past history must be preserved when simulating. ⁵

N. L. Gibson (OSU)

⁵**N. L. Gibson** and S. Shaw, "Polynomial Chaos for Viscoelastic Volterra Kernels", *in preparation*.

PC for MM Viscoelastic Materials

Figure: Comparison of simulations of power law Volterra kernel vs continuous spectrum with Polynomial Chaos.

Polynomial Chaos for Multiscale Modeling

- Dispersive Maxwell System
- Maxwell-Random Lorentz System
- Viscoelastic Materials
- Magnetohydrodynamics

- Reservoir Operations
- Power Grid
- Tsunami Loading

Magnetohydrodynamics (MHD)

MHD = Maxwell + Navier-Stokes

Collaborators

- Rigel Woodside, NETL Albany
- Duncan McGregor, ORISE Fellow, 9/2014-6/2016
- Evan Rajbhandari, ORISE Fellow, 7/2020-6/2022
- Vrushali Bokil (PI), NSF-DMS Computational Mathematics, 8/1/2020–7/31/2022

PC for Hall MHD

Ohm's Law becomes

$$\mathbf{J} = \sigma(\mathbf{E} + \mathbf{u} \times \mathbf{B}) + \beta_e(\mathbf{J} \times \mathbf{B})$$

where ${\bf u}$ is the velocity, and $\beta_e=\omega_e\tau_e$ is the Hall parameter.

$$\mathbf{J} = \overline{\sigma}(\mathbf{E} + \mathbf{u} \times \mathbf{B}),$$

where

$$\overline{\sigma} = \sigma \begin{bmatrix} \frac{1}{1+\omega_e^2 \tau_e^2} & \frac{-\omega_e \tau_e}{1+\omega_e^2 \tau_e^2} & 0\\ \frac{\omega_e \tau_e}{1+\omega_e^2 \tau_e^2} & \frac{1}{1+\omega_e^2 \tau_e^2} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Compare to

$$\epsilon(\omega) = \epsilon_{\infty} + \epsilon_d \frac{1}{1 + \omega^2 \tau^2} + \epsilon_d \frac{\omega \tau}{1 + \omega^2 \tau^2} \mathbf{i}.$$

Polynomial Chaos for Multiscale Modeling

- Dispersive Maxwell System
- Maxwell-Random Lorentz System
- Viscoelastic Materials
- Magnetohydrodynamics

- Reservoir Operations
- Power Grid
- Tsunami Loading

Polynomial Chaos for Multiscale Modeling

- Dispersive Maxwell System
- Maxwell-Random Lorentz System
- Viscoelastic Materials
- Magnetohydrodynamics

- Reservoir Operations
- Power Grid
- Tsunami Loading

- Co-PI, Bonneville Power Administration (BPA) Technology Innovation Program, "Towards reduction of uncertainty in the operation of reservoir systems", with Arturo Leon (PI, Civil Engineering) and Christopher Hoyle (Co-PI, Mechanical Engineering), 10/2012–9/2015, \$665,593.
- Co-PI, BPA Technology Innovation Program, "Framework for Quantification of Risk and Valuation of Flexibility in the FCRPS", with Arturo Leon (PI, Civil Engineering), Christopher Hoyle (Co-PI, Mechanical Engineering), Claudio Fuentes (Co-PI, Statistics), Yong Chen (Co-PI, Applied Economics), 10/2015–5/2018, \$1.2M.

The broad context of the problem of interest is a PDE-constrained optimal control problem with uncertainty. In particular, one must

- maximize revenue (minimize cost to the consumer)
- minimize ecological violations
- meet electrical demand with hydro-power production
- at least 9 other constraints

Simulation of Unsteady Flows

- Most free surface flows are unsteady and nonuniform.
- Unsteady flows in river systems are most efficiently simulated using 1D models.

Saint-Venant equations: PDEs representing conservation of mass and momentum for a control volume:

$$B\frac{\partial y}{\partial t} + \frac{\partial Q}{\partial x} = 0, \qquad (6)$$

$$\frac{\partial Q}{\partial t} + \frac{\partial}{\partial x} \left(\frac{Q^2}{A} \right) + g A \left(\frac{\partial y}{\partial x} + S_f - S_0 \right) = 0, \qquad (7)$$

where x is a distance along the channel in the longitudinal direction, t is time, y is a water depth, Q is a flow discharge, B is a width of the channel, g is an acceleration due to gravity, A is a cross-sectional area of the flow, S_f is a friction slope, S_0 is a river bed slope.

Initial, boundary and interface conditions are required to close the system.

N. L. Gibson (OSU

Big 10 Columbia River System

N. L. Gibson (OSU

UQ for MM and DR

Dimension Reduction

- Simulations are required to be two weeks in duration.
- Solving for decision variables on each time step (daily or hourly) is computationally impractical.
- We wish to construct a reduced dimensional basis for the decisions.
- Fortunately there exist years worth of data.
- We solve only for the optimal coefficients of an expansion in this basis (Spectral Optimization Method⁶).
- Specifically, we construct a truncated Karhunen-Loeve (KL) expansion (or PCA) using the historical solutions

$$Q(t_j, \vec{\xi}) = \bar{Q}(t_j) + \sum_{k=1}^M \sqrt{\lambda_k} \psi_k(t_j) \xi_k$$

and optimize over $\xi_k, k = 1 \dots M$.

⁶D. Chen, A. S. Leon, **N. L. Gibson**, P. Hosseini, "Dimension reduction of decision variables for multi-reservoir operation: A spectral optimization model", Water Resources Research, 52 (1), 36–51, 2016.

N. L. Gibson (OSU

Grand Coulee outflows

Figure: Synthetic data for outflows at Grand Coulee.

Grand Coulee KL Expansion

Figure: Eigenvalues and eigenvectors of the covariance matrix for Grand Coulee.

Optimization Results

Figure: Goodness of multi-objective optimization results with various reduced dimension decision spaces.

N. L. Gibson (OSU

Polynomial Chaos for Multiscale Modeling

- Dispersive Maxwell System
- Maxwell-Random Lorentz System
- Viscoelastic Materials
- Magnetohydrodynamics

- Reservoir Operations
- Power Grid
- Tsunami Loading

Probabilistic Load Flow (PLF) problem

- A load flow analysis tests the reliability of the power grid under various supply and demand scenarios.
- Probabilistic Load Flow allows for each supply source and/or demand location to be a random variable.
- These are typically solved via Monte-Carlo methods or so-called convolution methods.

Probabilistic Load Flow (PLF) problem (continued)

- Our approach⁷: treat all of the solar power sources as spatial points within one underlying stochastic process.
- KL expansion results in 194 dependent random variables reduced to 12 uncorrelated random variables.
- Enables Anisotropic Sparse Grid Interpolation (Stochastic Collocation)

⁷B. Johnson, **N. L. Gibson** and E. Cotilla-Sanchez, "A Coupled Karhunen-Loève and Anisotropic Sparse Grid Interpolation Method for the Probabilistic Load Flow Problem", Electric Power Systems Research, 24 pages. *Accepted, to appear.*

N. L. Gibson (OSU)

UQ for MM and DR

Anisotropic Sparse Grid

Figure: Demonstration of full tensor grid, sparse grid, and anisotropic sparse grid.

PLF Results

Figure: Voltage magnitude CDF at Bus 93 in the IEEE 118-Bus system.

N. L. Gibson (OSU

UQ for MM and DR

Polynomial Chaos for Multiscale Modeling

- Dispersive Maxwell System
- Maxwell-Random Lorentz System
- Viscoelastic Materials
- Magnetohydrodynamics

- Reservoir Operations
- Power Grid
- Tsunami Loading

Tsunami Loading

In collaboration with Ben Mason and Yingqing Qiu (Civil Engineering)

- We have applied KL expansions to an uncertain hydraulic conductivity for a numerical soil model under wave loading.
- We compared Stochastic Finite Element Method to Stochastic Collocation and Monte Carlo.

Tsunami Loading Inverse Problem

- Determine the coefficients of a KL expansion for an unknown hydraulic conductivity given measurements of pressure.
- Data obtained from Hinsdale wave lab experiment.
- 20 dimensions reduced to 6; 50 Newton iterations reduced to 15.

• KL expansions used for dimension reduction

- · Forward problems in power flow and wave loading
- Optimal control for reservior modeling
- Parameter estimation for wave loading
- PC expansions used for multiscale modeling
 - Random Lorentz polarization
 - Well-posedness (Continuous and Discrete)
 - Dispersion analysis
 - Viscoelastic relaxation
 - Toward Hall MHD