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Maxwell System Maxwell’s Equations

Maxwell’s Equations

∂B

∂t
+∇× E = 0, in (0,T )×D (Faraday)

∂D

∂t
+ J−∇×H = 0, in (0,T )×D (Ampere)

∇ ·D = ∇ · B = 0, in (0,T )×D (Poisson/Gauss)

E(0, x) = E0; H(0, x) = H0, in D (Initial)

E× n = 0, on (0,T )× ∂D (Boundary)

E = Electric field vector

H = Magnetic field vector

J = Current density

D = Electric flux density

B = Magnetic flux density

n = Unit outward normal to ∂Ω
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Maxwell System Maxwell’s Equations

Constitutive Laws

Maxwell’s equations are completed by constitutive laws that describe the
response of the medium to the electromagnetic field.

D = εE + P

B = µH + M

J = σE + Js

P = Polarization

M = Magnetization

Js = Source Current

ε = Electric permittivity

µ = Magnetic permeability

σ = Electric Conductivity

where ε = ε0ε∞ and µ = µ0µr .
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Maxwell System Dispersive Media

Complex permittivity

For linear materials we can define P in terms of a convolution with E

P(t, x) = g ∗ E(t, x) =

∫ t

0
g(t − s, x; q)E(s, x)ds,

where g is the dielectric response function (DRF).

Allows for relaxation processes as well as resonance, and others.

In the frequency domain D̂ = εÊ + ĝÊ = ε0ε(ω)Ê, where ε(ω) is
called the complex permittivity.

We are interested in ultra-wide bandwidth electromagnetic pulse
interrogation of dispersive dielectrics, therefore we want an accurate
representation of ε(ω) over a broad range of frequencies.
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Maxwell System Dry skin data
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Figure: Real part of ε(ω), ε, or the permittivity [GLG96].
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Maxwell System Dry skin data

10
2

10
4

10
6

10
8

10
10

10
−4

10
−3

10
−2

10
−1

10
0

10
1

f (Hz)

σ

 

 

True Data
Debye Model
Cole−Cole Model

Figure: Imaginary part of ε(ω)/ω, σ, or the conductivity.
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Maxwell System Dispersive Media

Dispersive Media
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Figure: Debye model simulations [Banks2000].
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Maxwell System Dispersive Media

Relaxation Polarization Models

P(t, x) = g ∗ E(t, x) =

∫ t

0
g(t − s, x; q)E(s, x)ds,

Debye model [1913] q = [ε∞, εd , τ ]

g(t, x) = ε0εd/τ e−t/τ

or τ Ṗ + P = ε0εdE

or ε(ω) = ε∞ +
εd

1 + iωτ

with εd := εs − ε∞ and τ a relaxation time.

Cole-Cole model [1941] (heuristic generalization)
q = [ε∞, εd , τ, α]

ε(ω) = ε∞ +
εd

1 + (iωτ)α
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Maxwell System Dispersive Media

Polarization Models

Debye model [1913] q = [ε∞, εd , τ ]

ε(ω) = ε∞ +
εd

1 + iωτ

Cole-Cole model [1941] q = [ε∞, εd , τ, α]

ε(ω) = ε∞ +
εd

1 + (iωτ)α

Davidson-Cole model [1951] q = [ε∞, εd , τ, β]

ε(ω) = ε∞ +
εd

(1 + (iωτ))β

Havriliak-Negami model [1967] q = [ε∞, εd , τ, α, β]

ε(ω) = ε∞ +
εd

(1 + (iωτ)α)β
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Maxwell-Random Debye System Distributions of Relaxation Times

Distributions of Relaxation Times

As early as 1897, experiments by Drude demonstrated that some
materials exhibited “anomalous dispersion, i.e, the decrease in the
dielectric constant with increasing frequency” [Debye 1929].

In 1907, von Schweidler observed the need for multiple relaxation
times.
Around the same time, Debye’s papers appeared (in German) defining
and quantifying the relaxation time: “the time required for the
moments of the molecules to revert practically to a random
distribution after removal of the impressed field”.
Analogous to the Maxwell-Wiechert model of viscoelasticity from
1893.
In 1913, Wagner proposed a continuous distribution of relaxation
times.
In 1927, Debye invited to US (and translated his works into English).
In 1927, K.S. Cole studied electrical properties of biological systems
(during his postdoc at Harvard).
Was invited to visit Debye in Germany in 1928.
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Maxwell-Random Debye System Distributions of Relaxation Times

In 1940, R.H. Cole began PhD at Harvard and collaborated with
brother on a graphical method to test the Debye model, as well as a
heuristic fix.

In 1950, D.W. Davidson and R.H. Cole discovered materials that are
not well-represented by the Cole-Cole model, proposed a different
heuristic.

In 1967, Havriliak and Negami combined the two heuristics to form a
generalized model.

One can show that the Cole-Cole model (and extensions) corresponds
to a continuous distribution of relaxation times “... it is possible to
calculate the necessary distribution function by the method of Fuoss
and Kirkwood.” [Cole-Cole1941].

F (y) = yαβ
(
y2α + 2yα cos(πα) + 1

)
sin(βθ)/π − β/2,

where y = τ/τ0 and θ is defined implictly by

(yα + cos(πα)) tan(θ) = sin(πα).
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Maxwell-Random Debye System Distributions of Relaxation Times

[Garrappa2016]
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Maxwell-Random Debye System Distributions of Relaxation Times

Figure: Relaxation Time Distribution for CC model [Garrappa2016].
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Maxwell-Random Debye System Fit to dry skin data with uniform distribution
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Figure: Real part of ε(ω), ε, or the permittivity [REU2008].
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Maxwell-Random Debye System Distribution of Relaxation Times

Distributions of Parameters

To account for the effect of distributions of parameters q, consider the
following polydispersive DRF

h(t, x;F ) =

∫
Q
g(t, x; q)dF (q),

where Q is some admissible set and F ∈ P(Q).
Then the polarization becomes:

P(t, x;F ) =

∫ t

0
h(t − s, x;F )E(s, x)ds.

Alternatively we can define the random polarization P(t, x; q) to satisfy

P(t, x;F ) =

∫
Q
P(t, x; q)dF (q).
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Maxwell-Random Debye System Distribution of Relaxation Times

Random Polarization

In the case of relaxation polarization, the random polarization P(t, x; τ)
solves

τ Ṗ + P = ε0εdE

where τ is a random variable with PDF f (τ), for example,

f (τ) =
1

τb − τa

for a uniform distribution.

The electric field depends on the macroscopic polarization, which we take
to be the expected value of the random polarization at each point (t, x)

P(t, x;F ) =

∫ τb

τa

P(t, x; τ)f (τ)dτ.
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Maxwell-Random Debye System Polynomial Chaos

Polynomial Chaos

Apply Polynomial Chaos (PC) method [Wiener 1938, Xiu 2004] to
approximate each spatial component of the random polarization

τ Ṗ + P = ε0εdE , τ = τ(ξ) = τrξ + τm, ξ ∼ F

(with ξ mean 0 and variance 1) resulting in

(τrM + τmI )~̇α + ~α = ε0εdEê1

or
A~̇α + ~α = ~f .

The electric field depends on the macroscopic polarization, the expected
value of the random polarization at each point (t, x), which is

P(t, x ;F ) = E[P] ≈ α0(t, x).

Note that A is positive definite if τr < τm since λ(M) ∈ (−1, 1).
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Maxwell-Random Debye System Polynomial Chaos
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Maxwell-Random Debye System Inverse Problem Numerical Results
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Maxwell-Random Debye System Inverse Problem Numerical Results
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Stability and Dispersion Analyses Debye Dispersion Relation

(Deterministic) Maxwell-Debye System

Combining Maxwell’s Equations, Constitutive Laws, and the Debye model,
we have

µ0
∂H

∂t
= −∇× E, (1a)

ε0ε∞
∂E

∂t
= ∇×H− ε0εd

τ
E +

1

τ
P− J, (1b)

τ
∂P

∂t
= ε0εdE− P. (1c)
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Stability and Dispersion Analyses Debye Dispersion Relation

Assuming a solution to (1) of the form E = E0exp(i(ωt − k · x)), the
following relation must hold.

Debye Dispersion Relation

The dispersion relation for the Maxwell-Debye system is given by

ω2

c2
ε(ω) = ‖k‖2

where the complex permittivity is given by

ε(ω) = ε∞ + εd

(
1

1 + iωτ

)
Here, k is the wave vector and c = 1/

√
µ0ε0 is the speed of light.
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Stability and Dispersion Analyses Random Debye Dispersion Relation

Maxwell-Random Debye system

In a polydispersive Debye material, we have

µ0
∂H

∂t
= −∇× E, (2a)

ε0ε∞
∂E

∂t
= ∇×H− ∂P

∂t
− J (2b)

τ
∂P
∂t

+ P = ε0εdE (2c)

with

P(t, x;F ) =

∫ τb

τa

P(t, x; τ)dF (τ).
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Stability and Dispersion Analyses Random Debye Dispersion Relation

Theorem (G., 2015)

The dispersion relation for the system (14) is given by

ω2

c2
ε(ω) = ‖k‖2

where the expected complex permittivity is given by

ε(ω) = ε∞ + εdE
[

1

1 + iωτ

]
.

Where k is the wave vector and c = 1/
√
µ0ε0 is the speed of light.

Note: for a uniform distribution on [τa, τb], this has an analytic form since

E
[

1

1 + iωτ

]
=

1

ω(τb − τa)

[
arctan(ωτ) + i

1

2
ln
(
1 + (ωτ)2

)]τ=τa

τ=τb

.

The exact dispersion relation can be compared with a discrete dispersion
relation to determine the amount of dispersion error.
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Stability and Dispersion Analyses Debye Stability

2D Maxwell-Debye Transverse Electric (TE) curl equations

For simplicity in exposition and to facilitate analysis, we reduce the
Maxwell-Debye model to two spatial dimensions (we make the assumption
that fields do not exhibit variation in the z direction).

µ0
∂H

∂t
= −curl E, (3a)

ε0ε∞
∂E

∂t
= curl H − ε0εd

τ
E +

1

τ
P− J, (3b)

τ
∂P

∂t
= ε0εdE− P, (3c)

where E = (Ex ,Ey )T ,P = (Px ,Py )T and Hz = H.

Note curl U =
∂Uy

∂x −
∂Ux
∂y and curl V =

(
∂V
∂y ,−

∂V
∂x

)T
.
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Stability and Dispersion Analyses Debye Stability

Stability Estimates for Maxwell-Debye

System is well-posed since solutions satisfy the following stability estimate.

Theorem (Li2010)

Let D ⊂ R2, and let H, E, and P be the solutions to (the weak form of)
the 2D Maxwell-Debye TE system with PEC boundary conditions. Then
the system exhibits energy decay

E(t) ≤ E(0), ∀t ≥ 0

where the energy is defined by

E(t)2 = ‖√µ0H(t)‖2
2 + ‖

√
ε0ε∞E(t)‖2

2 +

∥∥∥∥ 1
√
ε0εd

P(t)

∥∥∥∥2

2

and ‖ · ‖2 is the L2(D) norm.
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Stability and Dispersion Analyses Random Debye Stability

We introduce the random Hilbert space VF = (L2(Ω)⊗ L2(D))2 equipped
with an inner product and norm as follows

(u, v)F = E[(u, v)2],

‖u‖2
F = E[‖u‖2

2].

The weak formulation of the 2D Maxwell-Random Debye TE system is(
∂H

∂t
, v

)
2

=

(
− 1

µ0
curl E, v

)
2

, (4)

(
ε0ε∞

∂E

∂t
,u

)
2

= (H, curl u)2 −
(
∂P

∂t
,u

)
2

, (5)

(
∂P
∂t
,w

)
F

=
(ε0εd

τ
E,w

)
F
−
(

1

τ
P,w

)
F

, (6)

for v ∈ L2(D), u ∈ H0(curl,D)2, and w ∈ VF .
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Stability and Dispersion Analyses Random Debye Stability

Stability Estimates for Maxwell-Random Debye

System is well-posed since solutions satisfy the following stability estimate.

Theorem (G., 2015)

Let D ⊂ R2, and let H, E, and P be the solutions to the weak form of the
2D Maxwell-Random Debye TE system with PEC boundary conditions.
Then the system exhibits energy decay

E(t) ≤ E(0), ∀t ≥ 0

where the energy is defined by

E(t)2 = ‖√µ0H(t)‖2
2 + ‖

√
ε0ε∞E(t)‖2

2 +

∥∥∥∥ 1
√
ε0εd
P(t)

∥∥∥∥2

F

.
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Stability and Dispersion Analyses Random Debye Stability

Proof: (for 2D)

By choosing v = H, u = E, and w = P in the weak form, and adding all
three equations into the time derivative of the definition of E2, we obtain

1

2

dE2(t)

dt
=−

(
curl E,H

)
2

+
(
H, curl E

)
2
−
(ε0εd

τ
E,E

)
F

+
(1

τ
P,E

)
F

+
(1

τ
E,P

)
F
−
( 1

ε0εdτ
P,P

)
F

=− ε0εd

(1

τ
E,E

)
F

+ 2
(1

τ
P,E

)
F
− 1

ε0εd

(1

τ
P,P

)
F

=
−1

ε0εd

∥∥∥∥1

τ
(P − ε0εdE)

∥∥∥∥2

F

.

dE(t)

dt
=

−1

ε0εdE(t)

∥∥∥∥1

τ
(P − ε0εdE)

∥∥∥∥2

F

≤ 0.
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Stability and Dispersion Analyses Maxwell-PC Debye Stability

Maxwell-PC Debye

Replace the Debye model with the PC approximation. In two dimensions
we have the 2D Maxwell-PC Debye TE scalar equations

µ0
∂H

∂t
=
∂Ex

∂y
− ∂Ey

∂x
, (7a)

ε0ε∞
∂Ex

∂t
=
∂H

∂y
− ∂α0,x

∂t
, (7b)

ε0ε∞
∂Ey

∂t
= −∂H

∂x
− ∂α0,y

∂t
, (7c)

A~̇αx + ~αx = ~fx , (7d)

A~̇αy + ~αy = ~fy . (7e)

where ~fx = ε0εdEx ê1 and ~fy = ε0εdEy ê1. Denote ~α = [~αx , ~αy ]T .
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Stability and Dispersion Analyses Maxwell-PC FDTD

Finite Difference Time Domain (FDTD)

We now choose a discretization of the Maxwell-PC Debye model. Note
that any scheme can be used independent of the spectral approach in
random space employed here [FEM: Yao 2018].

The Yee Scheme (FDTD)

This gives an explicit second order accurate scheme in time and space.

It is conditionally stable with the CFL condition

ν :=
c∆t

h
≤ 1√

d

where ν is called the Courant number and c∞ = 1/
√
µ0ε0ε∞ is the

fastest wave speed and d is the spatial dimension, and h is the
(uniform) spatial step.

The Yee scheme can exhibit numerical dispersion and dissipation.
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Stability and Dispersion Analyses Maxwell-PC FDTD

Discrete Debye Dispersion Relation

(Petropolous1994) showed that for the Yee scheme applied to the
Maxwell-Debye, the discrete dispersion relation can be written

ω2
∆

c2
ε∆(ω) = K 2

∆

where the discrete complex permittivity is given by

ε∆(ω) = ε∞ + εd

(
1

1 + iω∆τ∆

)
with discrete (mis-)representations of ω and τ given by

ω∆ =
sin (ω∆t/2)

∆t/2
, τ∆ = sec(ω∆t/2)τ.
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Stability and Dispersion Analyses Maxwell-PC FDTD

Discrete Debye Dispersion Relation (cont.)

The quantity K∆ is given by

K∆ =
sin (k∆z/2)

∆z/2

in 1D and is related to the symbol of the discrete first order spatial
difference operator by

iK∆ = F(D1,∆z).

In this way, we see that the left hand side of the discrete dispersion relation

ω2
∆

c2
ε∆(ω) = K 2

∆

is unchanged when one moves to higher order spatial derivative
approximations [Bokil-G,2012] or even higher spatial dimension
[Bokil-G,2013].
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Stability and Dispersion Analyses Maxwell-PC FDTD

Let τEx
h , τ

Ey

h , τHh be the sets of spatial grid points on which the Ex , Ey ,
and H fields, respectively, will be discretized. The discrete L2 grid norms
are defined as

‖V‖2
E = ∆x∆y

L−1∑
`=0

J−1∑
j=0

(
|Vx

`+ 1
2 ,j
|2 + |Vy

`,j+ 1
2

|2
)
, (8)

‖U‖2
H = ∆x∆y

L−1∑
`=0

J−1∑
j=0

|U`+ 1
2
,j+ 1

2
|2, (9)

with corresponding inner products. Each component αk is discretized on

τEx
h × τ

Ey

h with discrete L2 grid norm

‖~α‖2
α =

p∑
k=0

‖αk‖2
E ,

with a corresponding inner product

(~α, ~β)α =

p∑
k=0

(
αk ,βk

)
E
.
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Stability and Dispersion Analyses PC-Debye FDTD Stability

Energy Decay and Stability

Energy decay implies that the method is stable and hence convergent.

Theorem (G., 2015)

For n ≥ 0, let Un = [Hn− 1
2 ,En

x ,E
n
y , α

n
0,x , . . . , α

n
0,y , . . .]

T be the solutions of
the 2D Maxwell-PC Debye TE FDTD scheme with PEC boundary
conditions. If the usual CFL condition for Yee scheme is satisfied
c∞∆t ≤ h/

√
2, then there exists the energy decay property

En+1
h ≤ Enh

where the discrete energy is given by

(Enh )2 =
∣∣∣∣∣∣√µ0H

n
∣∣∣∣∣∣2
H

+ ||
√
ε0ε∞En||2E +

∣∣∣∣∣∣∣∣ 1
√
ε0εd

~αn

∣∣∣∣∣∣∣∣2
α

.

Note: ‖P‖2
F = E[‖P‖2

2] = ‖E[P]2 + Var(P)‖2
2 ≈ ‖~α‖2

α.
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Stability and Dispersion Analyses PC-Debye FDTD Stability

Energy Decay and Stability (cont.)

Proof.

First, showing that this is a discrete energy, i.e., a positive definite
function of the solution, involves recognizing that

(Enh )2 = µ0‖H
n‖2

H + ε0ε∞(En,AhE
n)E +

1

ε0εd
(~αn − Eê1,A

−1(~αn − Eê1))α

with Ah positive definite when the CFL condition is satisfied, and A−1 is
always positive definite (eigenvalues between τm − τr and τm + τr ).

The rest follows the proof for the deterministic case [Bokil-G, 2014] to
show

En+1
h − Enh

∆t
= −

(
2

En+1
h + Enh

)
1

ε0εd

∥∥∥∥ε0εdE
n+ 1

2 ê1 − ~α
n+ 1

2

∥∥∥∥2

A−1

. (10)
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Stability and Dispersion Analyses PC-Debye FDTD Dispersion Relation

Theorem (G., 2015)

The discrete dispersion relation for the Maxwell-PC Debye FDTD scheme
is given by

ω2
∆

c2
ε∆(ω) = K 2

∆

where the discrete expected complex permittivity is given by

ε∆(ω) := ε∞ + εd ê
T
1 (I + iω∆A∆)−1 ê1

and the discrete PC matrix is given by

A∆ := sec(ω∆t/2)A.

The definitions of the parameters ω∆ and K∆ are the same as before.
Recall the exact complex permittivity is given by

ε(ω) = ε∞ + εdE
[

1

1 + iωτ
.

]
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Stability and Dispersion Analyses PC-Debye FDTD Dispersion Analysis

Dispersion Error

We define the phase error Φ for a scheme applied to a model to be

Φ =

∣∣∣∣kEX − k∆

kEX

∣∣∣∣ , (11)

where the numerical wave number k∆ is implicitly determined by the
corresponding dispersion relation and kEX is the exact wave number for
the given model.

We wish to examine the phase error as a function of ω∆t in the
range [0, π]. ∆t is determined by hττm, while ∆x = ∆y determined
by CFL condition.
We note that ω∆t = 2π/Nppp, where Nppp is the number of points
per period, and is related to the number of points per wavelength as,
Nppw =

√
ε∞νNppp.

We assume a uniform distribution and the following parameters which
are appropriate constants for modeling aqueous Debye type materials:

ε∞ = 1, εs = 78.2, τm = 8.1× 10−12 sec, τr = 0.5τm.
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Figure: Plots of phase error at θ = 0 for (left column) τr = 0.5τm, (right column)
τr = 0.9τm, using hτ = 0.01.
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Figure: Log plots of phase error versus θ with fixed ω = 1/τm for (left column)
τr = 0.5τm, (right column) τr = 0.9τm, using hτ = 0.01. Legend indicates degree
M of the PC expansion.
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Random Debye Summary

Summary

We have presented a random ODE model for polydispersive Debye
media

We described an efficient numerical method utilizing polynomial
chaos (PC) and finite difference time domain (FDTD)

Exponential convergence in the number of PC terms was
demonstrated

We have proven (conditional) stability of the scheme via energy decay

We have derived a discrete dispersion relation and computed phase
errors
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Maxwell-Random Lorentz system Lorentz Model

Lorentz Model

We employ the physical assumption that electrons behave as damped
harmonic oscillators,

mẍ + 2mνẋ + mω2
0x = Fdriving .

The polarization is then defined as electron dipole moment density:

P̈ + 2νṖ + ω2
0P = ε0ω

2
pE

where ω0 is the resonant frequency, ν is a damping coefficient, and ωp is
referred to as a plasma frequency defined by ω2

p = (εs − ε∞)ω2
0.
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Maxwell-Random Lorentz system Lorentz Model

Complex Permittivity

Taking a Fourier transform of D = εE + P and inserting the convolution
form of the polarization model in for P, we get D̂(ω) = ε0ε(ω)Ê (ω) where

ε(ω) = ε∞ +
ω2
p

ω2
0 − ω2 − i2νω

.

For multiple Lorentz poles, the complex permittivity includes a (weighted)
sum of mechanisms:

ε(ω) = ε∞ +

Np∑
i=1

ω2
p,i

ω2
0,i − ω2 − i2νiω

.
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Maxwell-Random Lorentz system Maxwell-Random Lorentz

Random Polarization

The multi-pole Lorentz model motivates a model with a continuum of
Lorentz mechanisms, i.e., a distribution of dielectric parameters. We define
a random polarization to be a function of a dielectric parameter treated as
a random variable.

The random Lorentz model is

P̈ + 2νṖ + ω2
0P = ε0ω

2
pE

with parameter ω2
0 treated as a random variable with probability

distribution F on the interval (a, b). The macroscopic polarization is taken
to be the expected value of the random polarization,

P(t, z) =

∫ b

a
P(t, z ;ω2

0) dF (ω2
0).
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Maxwell-Random Lorentz system Maxwell-Random Lorentz

Random Polarization

Figure: ω2
0 ∼ U(0.75ω2

0,1.25ω2
0)
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Maxwell-Random Lorentz system Maxwell-Random Lorentz

Complex Permittivity with random ω2
0

Separate complex permittivity into real and imaginary parts (ε = εr + iεi ):

εr = ε∞ +
ω2
p(ω2

0 − ω2)

(ω2
0 − ω2)2 + 4ν2ω2

εi =
2ω2

pνω

(ω2
0 − ω2)2 + 4ν2ω2

.

Analytic integration is possible for uniform distribution:

E[εr ] =
1

b − a

∫ b

a

εrdω
2
0 = ε∞ +

ω2
p

2(b − a)

(
ln(ω2

0)2 − 2ω2
0ω

2 + ω4 + 4ν2ω2
) ∣∣∣b

a

E[εi ] =
1

b − a

∫ b

a

εidω
2
0 =

ω2
p

(b − a)
arctan

(
ω2 − ω2

0

2νω

) ∣∣∣b
a

N. L. Gibson (Oregon State) Maxwell-PC Dispersive ICERM 2018 52 / 72



Maxwell-Random Lorentz system Maxwell-Random Lorentz

Saltwater Data

Figure: Fits for single-pole, saltwater data
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Maxwell-Random Lorentz system Maxwell-Random Lorentz

Maxwell-Random Lorentz system

In a polydisperse Lorentz material, we have

ε0ε∞
∂E

∂t
= ∇×H− ∂P

∂t
(14a)

∂H

∂t
= − 1

µ0
∇× E (14b)

P̈ + 2νṖ + ω2
0P = ε0ω

2
pE (14c)

with

P(t, x) =

∫ b

a

P(t, x;ω2
0)f (ω2

0)dω2
0.
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Maxwell-Random Lorentz system Maxwell-Random Lorentz

Theorem (Stability of Maxwell-Random Lorentz)

Let D ⊂ R2 and suppose that E ∈ C (0,T ;H0(curl,D)) ∩ C 1(0,T ; (L2(D))2),

P ∈ C 1(0,T ;
(
L2(Ω)⊗ L2(D)

)2
), and H(t) ∈ C 1(0,T ; L2(D)) are solutions of

the weak formulation for the Maxwell-Random Lorentz system along with PEC
boundary conditions. Then the system exhibits energy decay

E(t) ≤ E(0) ∀t ≥ 0,

where the energy E(t) is defined as

E(t)2 =
∥∥∥√µ0 H(t)

∥∥∥2

2
+
∥∥∥√ε0ε∞ E(t)

∥∥∥2

2
+
∥∥∥ ω0

ωp
√
ε0
P(t)

∥∥∥2

F
+
∥∥∥ 1

ωp
√
ε0
J (t)

∥∥∥2

F

(15)

where ‖u‖2
F = E[‖u‖2

2] and J := ∂P
∂t .

Proof involves showing that

dE(t)

dt
=
−1

E(t)

∥∥∥√ 2ν

ε0ω2
p

J
∥∥∥2

F
≤ 0.
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Maxwell-Random Lorentz system Maxwell-PC Lorentz

Polynomial Chaos

We wish to approximate the random polarization with orthogonal
polynomials of the standard random variable ξ. Let ω2

0 = rξ + m and
ξ ∈ [−1, 1]. Suppressing the dimension of P and the spatial dependence,
we have

P(ξ, t) =
∞∑
i=0

αi (t)φi (ξ)→ P̈ + 2νṖ + ω2
0P = ε0ω

2
pE .

Utilizing the Triple Recursion Relation for orthogonal polynomials:

ξφn(ξ) = anφn+1(ξ) + bnφn(ξ) + cnφn−1(ξ).

the differential equation becomes

∞∑
i=0

[α̈i (t) + 2να̇i (t) + mαi (t)]φi (ξ)

+ r
∞∑
i=0

αi (t) [aiφi+1(ξ) + biφi (ξ) + ciφi−1(ξ)] = ε0ω
2
pEφ0(ξ).
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Maxwell-Random Lorentz system Maxwell-PC Lorentz

Galerkin Projection

We apply a Galerkin Projection onto the space of polynomials of degree at
most p:

~̈α + 2ν~̇α + A~α = ~f

A = rM + mI , M =



b0 c1 0 · · · 0

a0 b1 c2
...

0
. . .

. . .
. . . 0

... ap−2 bb−1 cp
0 · · · 0 ap−1 bp


.

Or we can write as a first order system:

~̇α = ~β

~̇β = −A~α− 2νI ~β + ~f ,

where ~f = ê1ε0ω
2
pE with ωp meaning expected value.
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Maxwell-Random Lorentz system Maxwell-PC Lorentz

Maxwell-PC Lorentz

The polynomial chaos system coupled with 1D Maxwell’s equations
becomes

ε∞ε0
∂E

∂t
= −∂H

∂z
− β0

∂H

∂t
= − 1

µ0

∂E

∂z

~̇α = ~β

~̇β = −A~α− 2νI ~β + ~f

Initial Conditions:

E (0, z) = H(0, z) = ~α(0, z) = ~β(0, z) = 0

Boundary Conditions:

E (t, 0) = EL(t) and E (t, zR) = 0
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Maxwell-Random Lorentz system Maxwell-PC Lorentz-FDTD

We stagger three discrete meshes in the x and y directions and two
discrete meshes in time:

τEx
h :=

{(
x`+ 1

2
, yj
)
|0 ≤ ` ≤ L− 1, 0 ≤ j ≤ J

}
τ
Ey

h :=
{(

x`, yj+ 1
2

)
|0 ≤ ` ≤ L, 0 ≤ j ≤ J − 1

}
τHh :=

{(
x`+ 1

2
, yj+ 1

2

)
|0 ≤ ` ≤ L− 1, 0 ≤ j ≤ J − 1

}
τEt := {(tn) |0 ≤ n ≤ N}

τHt :=
{(

tn+ 1
2

)
|0 ≤ n ≤ N − 1

}
.
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Maxwell-Random Lorentz system Discrete Stability

Staggered L2 normed spaces

Next, we define the L2 normed spaces

VE :=
{

F : τEx

h × τ
Ey

h −→ R2 | F = (Fx
l+ 1

2
,j
,Fy

l,j+ 1
2

)T , ‖F‖E <∞
}

(18)

VH :=
{
U : τHh −→ R | U = (Ul+ 1

2 ,j+
1
2
), ‖U‖H <∞

}
(19)

with the following discrete norms and inner products

‖F‖2
E = ∆x∆y

L−1∑
`=0

J−1∑
j=0

(
|Fx

`+ 1
2
,j
|2 + |Fy

`,j+ 1
2

|2
)
,∀ F ∈ VE (20)

(F,G)E = ∆x∆y
L−1∑
`=0

J−1∑
j=0

(
Fx

`+ 1
2
,j
Gx

`+ 1
2
,j

+ Fy
`,j+ 1

2

Gy
`,j+ 1

2

)
,∀ F,G ∈ VE (21)

‖U‖2
H = ∆x∆y

L−1∑
`=0

J−1∑
j=0

|U`+ 1
2 ,j+

1
2
|2,∀ U ∈ VH (22)

(U,V )H = ∆x∆y
L−1∑
`=0

J−1∑
j=0

U`+ 1
2 ,j+

1
2
V`+ 1

2 ,j+
1
2
,∀ U,V ∈ VH . (23)
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Maxwell-Random Lorentz system Discrete Stability

We define a space and inner product for the random polarization in
vector notation, since ~α and ~β are now 2× p + 1 matrices:

Vα :=
{
~α : τEx

h × τ
Ey

h −→ R2 × Rp+1
∣∣∣ ~α = [α0, . . . ,αp],αk ∈ VE , ‖~α‖α <∞

}
where the discrete L2 grid norm and inner product are defined as

‖~α‖2
α =

p∑
k=0

‖αk‖2
E , ∀ ~α ∈ Vα

(~α, ~β)α =

p∑
k=0

(
αk ,βk

)
E
, ∀ ~α, ~β ∈ Vα.

We choose both spatial steps to be uniform and equal
(∆x = ∆y = h), and require that the usual CFL condition for two
dimensions holds:

√
2c∞∆t ≤ h. (24)
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Maxwell-Random Lorentz system Discrete Stability

Theorem (Energy Decay for Maxwell-PC Lorentz-FDTD)

If the stability condition (24) is satisfied, then the Yee scheme for the 2D TE
mode Maxwell-PC Lorentz system satisfies the discrete identity

δtE
n+ 1

2

h =
−1

En+ 1
2

h

∥∥∥∥∥
√

2ν

ε0ω2
p

~β
n+ 1

2

h

∥∥∥∥∥
2

A

(25)

for all n where

Enh =

µ0(Hn+ 1
2 ,Hn− 1

2 )H + ‖
√
ε0ε∞ En‖2

E +

∥∥∥∥∥
√

ω2
0

ε0ω2
p

~αn

∥∥∥∥∥
2

α

+

∥∥∥∥∥
√

1

ε0ω2
p

~βn

∥∥∥∥∥
2

α

1/2

(26)
defines a discrete energy.

In the above ‖~α‖2
A := (A~α, ~α)α given A positive definite, which is true iff r < m.

Note that ‖~α‖2
α ≈ ‖E[P]‖2

2 + ‖StdDev(P)‖2
2 = E[‖P‖2

2] = ‖P‖2
F so that this is a

natural extension of the Maxwell-Random Lorentz energy (15).
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Maxwell-Random Lorentz system Random Lorentz Dispersion Relation

Theorem

The dispersion relation for the Maxwell-Random Lorentz system is given by

ω2

c2
ε(ω) = ‖k‖2

where the expected complex permittivity is given by

ε(ω) = ε∞ + (εs − ε∞)E
[

ω2
0

ω2
0 − ω2 − i2νω

]
.

Where k is the wave vector and c = 1/
√
µ0ε0 is the speed of light.

The exact dispersion relation can be compared with a discrete dispersion
relation to determine the amount of dispersion error.
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Maxwell-Random Lorentz system PC-Lorentz FDTD Dispersion Analysis

Dispersion Error

We define the phase error Φ for a scheme applied to a model to be

Φ =

∣∣∣∣kEX − k∆

kEX

∣∣∣∣ , (27)

where the numerical wave number k∆ is implicitly determined by the
corresponding discrete dispersion relation and kEX is the exact wave
number for the given model.

We wish to examine the phase error as a function of ω in the range
around ω0. ∆t is determined by h := ω0∆t/(2π), while ∆x = ∆y
are determined by the CFL condition.

We assume a uniform distribution and the following parameters
Lorentz material:

ε∞ = 1, εs = 2.25, ν = 2.8×1015 1/sec, ω0 = 4×1016 rad/sec.
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Maxwell-Random Lorentz system PC-Lorentz FDTD Dispersion Analysis

0 2 4 6 8

10
16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
PC Lorentz Dispersion with h=0.1 and p=1

r=0.1
0

2

r=0.2
0

2

r=0.3
0

2

r=0.4
0

2

r=0.5
0

2

Figure: Plots of phase error at θ = 0.
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Maxwell-Random Lorentz system PC-Lorentz FDTD Dispersion Analysis
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Maxwell-Random Lorentz system PC-Lorentz FDTD Dispersion Analysis
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Maxwell-Random Lorentz system PC-Lorentz FDTD Dispersion Analysis
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Maxwell-Random Lorentz system PC-Lorentz FDTD Dispersion Analysis
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Maxwell-Random Lorentz system PC-Lorentz FDTD Dispersion Analysis
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Future Directions

Future Directions

Extend to
Drude
meta-material models
nonlinear polarization models
viscoelastic system (partially done)

Inverse problems from (actual) time-domain data
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Appendix Polynomial Chaos

Polynomial Chaos: Simple example

Consider the first order, constant coefficient, linear IVP

ẏ + ky = g , y(0) = y0

with
k = k(ξ) = ξ, ξ ∼ N (0, 1), g(t) = 0.

We can represent the solution y as a Polynomial Chaos (PC) expansion in
terms of (normalized) orthogonal Hermite polynomials Hj :

y(t, ξ) =
∞∑
j=0

αj(t)φj(ξ), φj(ξ) = Hj(ξ).

Substituting into the ODE we get

∞∑
j=0

α̇j(t)φj(ξ) +
∞∑
j=0

αj(t)ξφj(ξ) = 0.
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Appendix Polynomial Chaos

Triple recursion formula

∞∑
j=0

α̇j(t)φj(ξ) +
∞∑
j=0

αj(t)ξφj(ξ) = 0.

We can eliminate the explicit dependence on ξ by using the triple recursion
formula for Hermite polynomials

ξHj = jHj−1 + Hj+1.

Thus
∞∑
j=0

α̇j(t)φj(ξ) +
∞∑
j=0

αj(t)(jφj−1(ξ) + φj+1(ξ)) = 0.
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Appendix Polynomial Chaos

Galerkin Projection onto span({φi}pi=0)

In order to approximate y we wish to find a finite system for at least the
first few αi .
We take the weighted inner product with the ith basis, i = 0, . . . , p,

∞∑
j=0

α̇j(t)〈φj , φi 〉W + αj(t)(j〈φj−1, φi 〉W + 〈φj+1, φi 〉W ) = 0,

where

〈f (ξ), g(ξ)〉W :=

∫
f (ξ)g(ξ)W (ξ)dξ.

By orthogonality, 〈φj , φi 〉W = 〈φi , φi 〉W δij , we have

α̇i 〈φi , φi 〉W + (i + 1)αi+1〈φi , φi 〉W + αi−1〈φi , φi 〉W = 0, i = 0, . . . , p.
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Appendix Polynomial Chaos

Deterministic ODE system

Let ~α represent the vector containing α0(t), . . . , αp(t).
Assuming α−1(t), αp+1(t), etc., are identically zero, the system of ODEs
can be written

~̇α + M~α = ~0,

with

M =


0 1
1 0 2

. . .
. . .

. . .
. . .

. . . p
1 0


The degree p PC approximation is y(t, ξ) ≈ yp(t, ξ) =

∑p
j=0 αj(t)φj(ξ).

The mean value E[y(t, ξ)] ≈ E[yp(t, ξ)] = α0(t).
The variance Var(y(t, ξ)) ≈

∑p
j=1 αj(t)2.
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Appendix Polynomial Chaos

Figure: Convergence of error with Gaussian random variable by Hermitian-chaos.
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Appendix Polynomial Chaos

Generalizations

Consider the non-homogeneous IVP

ẏ + ky = g(t), y(0) = y0

with
k = k(ξ) = σξ + µ, ξ ∼ N (0, 1),

then

α̇i + σ [(i + 1)αi+1 + αi−1] + µαi = g(t)δ0i , i = 0, . . . , p,

or the deterministic ODE system is

~̇α + (σM + µI )~α = g(t)~e1.

Note that the initial condition for the PC system is ~α(0) = y0 ~e1.
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Appendix Polynomial Chaos

Generalizations

For any choice of family of orthogonal polynomials, there exists a triple
recursion formula. Given the arbitrary relation

ξφj = ajφj−1 + bjφj + cjφj+1

(with φ−1 = 0) then the matrix above becomes

M =


b0 a1

c0 b1 a2

. . .
. . .

. . .
. . .

. . . ap
cp−1 bp
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Appendix Polynomial Chaos

Generalized Polynomial Chaos

Table: Popular distributions and corresponding orthogonal polynomials.

Distribution Polynomial Support

Gaussian Hermite (−∞,∞)
gamma Laguerre [0,∞)

beta Jacobi [a, b]
uniform Legendre [a, b]

Note: lognormal random variables may be handled as a non-linear function
(e.g., Taylor expansion) of a normal random variable.
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