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Maxwell-Debye Maxwell’s Equations

Maxwell’s Equations

∂B

∂t
+∇× E = 0, in (0,T )×D (Faraday)

∂D

∂t
+ J−∇×H = 0, in (0,T )×D (Ampere)

∇ ·D = ∇ · B = 0, in (0,T )×D (Poisson/Gauss)

E(0, x) = E0; H(0, x) = H0, in D (Initial)

E× n = 0, on (0,T )× ∂D (Boundary)

E = Electric field vector

H = Magnetic field vector

J = Current density

D = Electric flux density

B = Magnetic flux density

n = Unit outward normal to ∂Ω
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Maxwell-Debye Maxwell’s Equations

Constitutive Laws

Maxwell’s equations are completed by constitutive laws that describe the
response of the medium to the electromagnetic field.

D = εE + P

B = µH + M

J = σE + Js

P = Polarization

M = Magnetization

Js = Source Current

ε = Electric permittivity

µ = Magnetic permeability

σ = Electric Conductivity

where ε = ε0ε∞ and µ = µ0µr .
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Maxwell-Debye Dispersive Media

Complex permittivity

We can usually define P in terms of a convolution

P(t, x) = g ∗ E(t, x) =

∫ t

0
g(t − s, x; q)E(s, x)ds,

where g is the dielectric response function (DRF).

In the frequency domain D̂ = εÊ + ĝÊ = ε0ε(ω)Ê, where ε(ω) is
called the complex permittivity.

ε(ω) described by the polarization model

We are interested in ultra-wide bandwidth electromagnetic pulse
interrogation of dispersive dielectrics, therefore we want an accurate
representation of ε(ω) over a broad range of frequencies.
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Maxwell-Debye Dry skin data
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Figure : Real part of ε(ω), ε, or the permittivity [GLG96].
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Maxwell-Debye Dry skin data
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Figure : Imaginary part of ε(ω)/ω, σ, or the conductivity.
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Maxwell-Debye Dispersive Media

Polarization Models

P(t, x) = g ∗ E(t, x) =

∫ t

0
g(t − s, x; q)E(s, x)ds,

Debye model [1929] q = [ε∞, εd , τ ]

g(t, x) = ε0εd/τ e−t/τ

or τ Ṗ + P = ε0εdE

or ε(ω) = ε∞ +
εd

1 + iωτ

with εd := εs − ε∞ and τ a relaxation time.

Cole-Cole model [1936] (heuristic generalization)
q = [ε∞, εd , τ, α]

ε(ω) = ε∞ +
εd

1 + (iωτ)1−α
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Maxwell-Debye Dispersive Media

Dispersive Media
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Figure : Debye model simulations.
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Maxwell-Debye

Maxwell-Debye System

Combining Maxwell’s Equations, Constitutive Laws, and the Debye model,
we have

µ0
∂H

∂t
= −∇× E, (1a)

ε0ε∞
∂E

∂t
= ∇×H− ε0εd

τ
E +

1

τ
P− J, (1b)

τ
∂P

∂t
= ε0εdE− P. (1c)
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Maxwell-Debye Debye Dispersion Relation

Assuming a solution to (1) of the form E = E0exp(i(ωt − k · x)), the
following relation must hold.

Debye Dispersion Relation

The dispersion relation for the Maxwell-Debye system is given by

ω2

c2
ε(ω) = ‖k‖2

where the complex permittivity is given by

ε(ω) = ε∞ + εd

(
1

1 + iωτ

)
Here, k is the wave vector and c = 1/

√
µ0ε0 is the speed of light.
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Maxwell-Debye

2D Maxwell-Debye Transverse Electric (TE) curl equations

For simplicity in exposition and to facilitate analysis, we reduce the
Maxwell-Debye model to two spatial dimensions (we make the assumption
that fields do not exhibit variation in the z direction).

µ0
∂H

∂t
= −curl E, (2a)

ε0ε∞
∂E

∂t
= curl H − ε0εd

τ
E +

1

τ
P− J, (2b)

τ
∂P

∂t
= ε0εdE− P, (2c)

where E = (Ex ,Ey )T ,P = (Px ,Py )T and Hz = H.

Note curl U =
∂Uy

∂x −
∂Ux
∂y and curl V =

(
∂V
∂y ,−

∂V
∂x

)T
.
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Maxwell-Debye Debye Stability

Stability Estimates for Maxwell-Debye

System is well-posed since solutions satisfy the following stability estimate.

Theorem (Li2010)

Let D ⊂ R2, and let H, E, and P be the solutions to (the weak form of)
the 2D Maxwell-Debye TE system with PEC boundary conditions. Then
the system exhibits energy decay

E(t) ≤ E(0), ∀t ≥ 0

where the energy is defined by

E(t)2 = ‖√µ0H(t)‖2
2 + ‖

√
ε0ε∞E(t)‖2

2 +

∥∥∥∥ 1
√
ε0εd

P(t)

∥∥∥∥2

2

and ‖ · ‖2 is the L2(D) norm.
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Maxwell-Random Debye Distribution of Parameters

Motivation for Distributions

The Cole-Cole model corresponds to a fractional order ODE in the
time-domain and is difficult to simulate

Debye is efficient to simulate, but does not represent permittivity well

Better fits to data are obtained by taking linear combinations of
Debye models (discrete distributions), idea comes from the known
existence of multiple physical mechanisms: multi-pole debye (like
stair-step approximation)

An alternative approach is to consider the Debye model but with a
(continuous) distribution of relaxation times [von Schweidler1907]

Empirical measurements suggest a log-normal or Beta distribution
[Wagner1913] (but uniform is easier)

Using Mellin transforms, can show Cole-Cole corresponds to a
continuous distribution
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Maxwell-Random Debye Fit to dry skin data with uniform distribution
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Figure : Real part of ε(ω), ε, or the permittivity [REU2008].
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Maxwell-Random Debye Fit to dry skin data with uniform distribution
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Figure : Imaginary part of ε(ω)/ω, σ, or the conductivity [REU2008].
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Maxwell-Random Debye Distribution of Parameters

Distributions of Parameters

To account for the effect of possible multiple parameter sets q, consider
the following polydispersive DRF

h(t, x; F ) =

∫
Q

g(t, x; q)dF (q),

where Q is some admissible set and F ∈ P(Q).
Then the polarization becomes:

P(t, x; F ) =

∫ t

0
h(t − s, x; F )E(s, x)ds.
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Maxwell-Random Debye

Random Polarization

Alternatively we can define the random polarization P(t, x; τ) to be the
solution to

τ Ṗ + P = ε0εdE

where τ is a random variable with PDF f (τ), for example,

f (τ) =
1

τb − τa

for a uniform distribution.
The electric field depends on the macroscopic polarization, which we take
to be the expected value of the random polarization at each point (t, x)

P(t, x; F ) =

∫ τb

τa

P(t, x; τ)f (τ)dτ.
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Maxwell-Random Debye

Maxwell-Random Debye system

In a polydispersive Debye material, we have

µ0
∂H

∂t
= −∇× E, (3a)

ε0ε∞
∂E

∂t
= ∇×H− ∂P

∂t
− J (3b)

τ
∂P
∂t

+ P = ε0εdE (3c)

with

P(t, x; F ) =

∫ τb

τa

P(t, x; τ)dF (τ).
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Maxwell-Random Debye Inverse Problem Numerical Results
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Maxwell-Random Debye Random Debye Dispersion Relation

Theorem (G., 2015)

The dispersion relation for the system (3) is given by

ω2

c2
ε(ω) = ‖k‖2

where the expected complex permittivity is given by

ε(ω) = ε∞ + εdE
[

1

1 + iωτ

]
.

Again, k is the wave vector and c = 1/
√
µ0ε0 is the speed of light.

Note: for a uniform distribution on [τa, τb], this has an analytic form since

E
[

1

1 + iωτ

]
=

1

ω(τb − τa)

[
arctan(ωτ) + i

1

2
ln
(
1 + (ωτ)2

)]τ=τa

τ=τb

.
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Maxwell-Random Debye Random Debye Dispersion Relation

Proof: (for 2D)

Letting H = Hz , we have the 2D Maxwell-Random Debye TE scalar
equations:

µ0
∂H

∂t
=
∂Ex

∂y
− ∂Ey

∂x
, (4a)

ε0ε∞
∂Ex

∂t
=
∂H

∂y
− ∂Px

∂t
, (4b)

ε0ε∞
∂Ey

∂t
= −∂H

∂x
− ∂Py

∂t
, (4c)

τ
∂Px
∂t

+ Px = ε0εdEx (4d)

τ
∂Py
∂t

+ Py = ε0εdEy . (4e)
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Maxwell-Random Debye Random Debye Dispersion Relation

Proof: (cont.)

We assume plane wave solutions of the form

V = Ṽ ei(k·x−ωt)

where x = (x , y)T and k = (kx , ky )T . We have, for example,

P̃x = E[P̃x ] = ε0εd ẼxE
[

1

1 + iωτ

]
.

The rest is algebra.

The proof is similar in 1 and 3 dimensions.

The exact dispersion relation will be compared with a discrete
dispersion relation to determine the amount of dispersion error.
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Maxwell-Random Debye

We introduce the random Hilbert space VF = (L2(Ω)⊗ L2(D))2 equipped
with an inner product and norm as follows

(u, v)F = E[(u, v)2],

‖u‖2
F = E[‖u‖2

2].

The weak formulation of the 2D Maxwell-Random Debye TE system is(
∂H

∂t
, v

)
2

=

(
− 1

µ0
curl E, v

)
2

, (5)

(
ε0ε∞

∂E

∂t
,u

)
2

= (H, curl u)2 −
(
∂P

∂t
,u

)
2

, (6)

(
∂P
∂t
,w

)
F

=
(ε0εd

τ
E,w

)
F
−
(

1

τ
P,w

)
F

, (7)

for v ∈ L2(D), u ∈ H0(curl,D)2, and w ∈ VF .
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Maxwell-Random Debye Random Debye Stability

Stability Estimates for Maxwell-Random Debye

System is well-posed since solutions satisfy the following stability estimate.

Theorem (G., 2015)

Let D ⊂ R2, and let H, E, and P be the solutions to the weak form of the
2D Maxwell-Random Debye TE system with PEC boundary conditions.
Then the system exhibits energy decay

E(t) ≤ E(0), ∀t ≥ 0

where the energy is defined by

E(t)2 = ‖√µ0H(t)‖2
2 + ‖

√
ε0ε∞E(t)‖2

2 +

∥∥∥∥ 1
√
ε0εd
P(t)

∥∥∥∥2

F

.
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Maxwell-Random Debye Random Debye Stability

Proof: (for 2D)

By choosing v = H, u = E, and w = P in the weak form, and adding all
three equations into the time derivative of the definition of E2, we obtain

1

2

dE2(t)

dt
=−

(
curl E,H

)
2

+
(

H, curl E
)

2
−
(ε0εd

τ
E,E

)
F

+
(1

τ
P,E

)
F

+
(1

τ
E,P

)
F
−
( 1

ε0εdτ
P,P

)
F

=− ε0εd

(1

τ
E,E

)
F

+ 2
(1

τ
P,E

)
F
− 1

ε0εd

(1

τ
P,P

)
F

=
−1

ε0εd

∥∥∥∥1

τ
(P − ε0εdE)

∥∥∥∥2

F

.

dE(t)

dt
=

−1

ε0εdE(t)

∥∥∥∥1

τ
(P − ε0εdE)

∥∥∥∥2

F

≤ 0.
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Maxwell-PC Debye

Polynomial Chaos

Apply Polynomial Chaos (PC) method to approximate each spatial
component of the random polarization

τ Ṗ + P = ε0εdE , τ = τ(ξ) = τrξ + τm

resulting in
(τrM + τmI )~̇α + ~α = ε0εdE ê1

or
A~̇α + ~α = ~f .

The electric field depends on the macroscopic polarization, the expected
value of the random polarization at each point (t, x), which is

P(t, x ; F ) = E[P] ≈ α0(t, x).

Note that A is positive definite if τr < τm since λ(M) ∈ (−1, 1).
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Maxwell-PC Debye

Maxwell-PC Debye

Replace the Debye model with the PC approximation. In two dimensions
we have the 2D Maxwell-PC Debye TE scalar equations

µ0
∂H

∂t
=
∂Ex

∂y
− ∂Ey

∂x
, (8a)

ε0ε∞
∂Ex

∂t
=
∂H

∂y
− ∂α0,x

∂t
, (8b)

ε0ε∞
∂Ey

∂t
= −∂H

∂x
− ∂α0,y

∂t
, (8c)

A~̇αx + ~αx = ~fx , (8d)

A~̇αy + ~αy = ~fy . (8e)

where ~fx = ε0εdEx ê1 and ~fy = ε0εdEy ê1. Denote ~α = [~αx , ~αy ]T .
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Maxwell-PC Debye
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PC-Debye FDTD FDTD

Finite Difference Time Domain (FDTD)

We now define a discretization of the Maxwell-PC Debye model. Note that
any scheme can be used independent of the spectral approach in random
space employed here.

The Yee Scheme

In 1966 Kane Yee originated a set of finite-difference equations for the
time dependent Maxwell’s curl equations in freespace.

The finite difference time domain (FDTD) or Yee scheme solves for
both the electric and magnetic fields in time and space using the
coupled Maxwell’s curl equations rather than solving for the electric
field alone (or the magnetic field alone) with a wave equation.

Approximates first order derivatives very accurately by evaluating on
staggered grids.

N. L. Gibson (OSU) Maxwell-PC Debye PNWNAS 2015 36 / 56



PC-Debye FDTD FDTD

Yee Scheme in One Space Dimension

Staggered Grids: The electric field/flux is evaluated on the primary
grid in both space and time and the magnetic field/flux is evaluated
on the dual grid in space and time.

The Yee scheme is

H|n+ 1
2

`+ 1
2

− H|n−
1
2

`+ 1
2

∆t
= − 1

µ

E |n`+1 − E |n`
∆z

E |n+1
` − E |n`

∆t
= −1

ε

H|n+ 1
2

`+ 1
2

− H|n+ 1
2

`− 1
2

∆z

-�h

tn+ 1
2

tn+1

� � � � � �

v v v v v
. . . z− 5

2

z−2 z− 3
2

z−1 z− 1
2

z0 z1z 1
2

z2z 3
2

z 5
2
. . .
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PC-Debye FDTD FDTD

This gives an explicit second order accurate scheme in time and space.

It is conditionally stable with the CFL condition

ν :=
c∆t

h
≤ 1√

d

where ν is called the Courant number and d is the spatial dimension,
and h is the (uniform) spatial step.

The initial value problem is well-posed and the scheme is consistent
and stable. The method is convergent by the Lax-Richtmyer
Equivalence Theorem.

The Yee scheme can exhibit numerical dispersion.

Dispersion error can be reduced by decreasing the mesh size or
resorting to higher order accurate finite difference approximations.
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PC-Debye FDTD Debye FDTD

Extensions of the Yee Scheme to Dispersive Media

The ordinary differential equation for the polarization is discretized
using second order centered differences and an averaging of zero order
terms.

The resulting scheme remains second-order accurate in both time and
space with the same CFL condition, c∞∆t ≤ h/

√
d , except that

c∞ = 1/
√
µ0ε0ε∞ is the fastest wave speed.

However, the Yee scheme for the Maxwell-Debye system is now
dissipative in addition to being dispersive.

N. L. Gibson (OSU) Maxwell-PC Debye PNWNAS 2015 39 / 56



PC-Debye FDTD Debye FDTD

Yee Scheme for Maxwell-Debye System (in 1D)

µ0
∂H

∂t
= −∂E

∂z

ε0ε∞
∂E

∂t
= −∂H

∂z
− ∂P

∂t

τ
∂P

∂t
= ε0εdE − P

become

µ0

Hn+1
j+ 1

2

− Hn
j+ 1

2

∆t
= −

E
n+ 1

2
j+1 − E

n+ 1
2

j

∆z

ε0ε∞
E
n+ 1

2
j − E

n− 1
2

j

∆t
= −

Hn
j+ 1

2

− Hn
j− 1

2

∆z
−

P
n+ 1

2
j − P

n− 1
2

j

∆t

τ
P
n+ 1

2
j − P

n− 1
2

j

∆t
= ε0εd

E
n+ 1

2
j + E

n− 1
2

j

2
−

P
n+ 1

2
j + P

n− 1
2

j

2
.
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PC-Debye FDTD Debye FDTD

Discrete Debye Dispersion Relation

(Petropolous1994) showed that for the Yee scheme applied to the
Maxwell-Debye, the discrete dispersion relation can be written

ω2
∆

c2
ε∆(ω) = K 2

∆

where the discrete complex permittivity is given by

ε∆(ω) = ε∞ + εd

(
1

1 + iω∆τ∆

)
with discrete (mis-)representations of ω and τ given by

ω∆ =
sin (ω∆t/2)

∆t/2
, τ∆ = sec(ω∆t/2)τ.
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PC-Debye FDTD Debye FDTD

Discrete Debye Dispersion Relation (cont.)

The quantity K∆ is given by

K∆ =
sin (k∆z/2)

∆z/2

in 1D and is related to the symbol of the discrete first order spatial
difference operator by

iK∆ = F(D1,∆z).

In this way, we see that the left hand side of the discrete dispersion relation

ω2
∆

c2
ε∆(ω) = K 2

∆

is unchanged when one moves to higher order spatial derivative
approximations [Bokil-G,2012] or even higher spatial dimension
[Bokil-G,2013].
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PC-Debye FDTD

The discretization of the PC system

A~̇α + ~α = ~f

is performed similarly to the deterministic system in order to preserve
second order accuracy. Applying second order central differences at
~αn
j = ~α(tn, zj):

A
~α
n+ 1

2
j − ~αn− 1

2
j

∆t
+
~α
n+ 1

2
j + ~α

n− 1
2

j

2
=
~f
n+ 1

2
j + ~f

n− 1
2

j

2
. (9)

Couple this with the equations from above:

µ0

Hn+1
j+ 1

2

− Hn
j+ 1

2

∆t
= −

E
n+ 1

2
j+1 − E

n+ 1
2

j

∆z
(10a)

ε0ε∞
E
n+ 1

2
j − E

n− 1
2

j

∆t
= −

Hn
j+ 1

2

− Hn
j− 1

2

∆z
−

α
n+ 1

2
0,j − α

n− 1
2

0,j

∆t
. (10b)
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PC-Debye FDTD

Let τEx
h , τ

Ey

h , τHh be the sets of spatial grid points on which the Ex , Ey ,
and H fields, respectively, will be discretized. The discrete L2 grid norms
are defined as

‖V‖2
E = ∆x∆y

L−1∑
`=0

J−1∑
j=0

(
|Vx

`+ 1
2 ,j
|2 + |Vy

`,j+ 1
2

|2
)
, (11)

‖U‖2
H = ∆x∆y

L−1∑
`=0

J−1∑
j=0

|U`+ 1
2
,j+ 1

2
|2, (12)

with corresponding inner products. Each component αk is discretized on

τEx
h × τ

Ey

h with discrete L2 grid norm

‖~α‖2
α =

p∑
k=0

‖αk‖2
E ,

with a corresponding inner product

(~α, ~β)α =

p∑
k=0

(
αk ,βk

)
E
.
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PC-Debye FDTD PC-Debye FDTD Stability

Energy Decay and Stability

Energy decay implies that the method is stable and hence convergent.

Theorem (G., 2015)

For n ≥ 0, let Un = [Hn− 1
2 ,En

x ,E
n
y , α

n
0,x , . . . , α

n
0,y , . . .]

T be the solutions of
the 2D Maxwell-PC Debye TE FDTD scheme with PEC boundary
conditions. If the usual CFL condition for Yee scheme is satisfied
c∞∆t ≤ h/

√
2, then there exists the energy decay property

En+1
h ≤ Enh

where the discrete energy is given by

(Enh )2 =
∣∣∣∣∣∣√µ0H

n
∣∣∣∣∣∣2
H

+ ||
√
ε0ε∞En||2E +

∣∣∣∣∣∣∣∣ 1
√
ε0εd

~αn

∣∣∣∣∣∣∣∣2
α

.

Note: ‖P‖2
F = E[‖P‖2

2] = ‖E[P]2 + Var(P)‖2
2 ≈ ‖~α‖2

α.
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PC-Debye FDTD PC-Debye FDTD Stability

Energy Decay and Stability (cont.)

Proof.

First, showing that this is a discrete energy, i.e., a positive definite
function of the solution, involves recognizing that

(Enh )2 = µ0‖H
n‖2

H + ε0ε∞(En,AhEn)E +
1

ε0εd
(~αn − E ê1,A

−1(~αn − E ê1))α

with Ah positive definite when the CFL condition is satisfied, and A−1 is
always positive definite (eigenvalues between τm − τr and τm + τr ).

The rest follows the proof for the deterministic case [Bokil-G, 2014] to
show

En+1
h − Enh

∆t
= −

(
2

En+1
h + Enh

)
1

ε0εd

∥∥∥∥ε0εdE
n+ 1

2 ê1 − ~α
n+ 1

2

∥∥∥∥2

A−1

. (13)
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PC-Debye FDTD PC-Debye FDTD Dispersion Relation

Theorem (G., 2015)

The discrete dispersion relation for the Maxwell-PC Debye FDTD scheme
in (9) and (10) is given by

ω2
∆

c2
ε∆(ω) = K 2

∆

where the discrete expected complex permittivity is given by

ε∆(ω) := ε∞ + εd êT1 (I + iω∆A∆)−1 ê1

and the discrete PC matrix is given by

A∆ := sec(ω∆t/2)A.

The definitions of the parameters ω∆ and K∆ are the same as before.
Recall the exact complex permittivity is given by

ε(ω) = ε∞ + εdE
[

1

1 + iωτ
.

]
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PC-Debye FDTD PC-Debye FDTD Dispersion Relation

Proof: (for 1D)

Assume plane wave solutions of the form

V n
j = Ṽ ei(ωn∆t−kj∆z)

and
αn
`,j = α̃`e

i(ωn∆t−kj∆z)

Substituting into (9) yields

Aα̃

(
2i

∆t
sin(ω∆t/2)

)
+ cos(ω∆t/2)α̃ = ε0εd cos(ω∆t/2)Ẽ ê1 (14)

which implies
α̃0 = êT1 (I + iω∆A∆)−1 ê1ε0εd Ẽ . (15)

The rest of the proof follows as before.

Note that the same relation holds in 2 and 3D as well as with higher order
accurate spatial difference operators.
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PC-Debye FDTD PC-Debye FDTD Dispersion Analysis

Dispersion Error

We define the phase error Φ for a scheme applied to a model to be

Φ =

∣∣∣∣kEX − k∆

kEX

∣∣∣∣ , (16)

where the numerical wave number k∆ is implicitly determined by the
corresponding dispersion relation and kEX is the exact wave number for
the given model.

We wish to examine the phase error as a function of ω∆t in the
range [0, π]. ∆t is determined by hττm, while ∆x = ∆y determined
by CFL condition.
We note that ω∆t = 2π/Nppp, where Nppp is the number of points
per period, and is related to the number of points per wavelength as,
Nppw =

√
ε∞νNppp.

We assume a uniform distribution and the following parameters which
are appropriate constants for modeling aqueous Debye type materials:

ε∞ = 1, εs = 78.2, τm = 8.1× 10−12 sec, τr = 0.5τm.
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PC-Debye FDTD PC-Debye FDTD Dispersion Analysis
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Figure : Plots of phase error at θ = 0 for (left column) τr = 0.5τm, (right
column) τr = 0.9τm, using hτ = 0.01.
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column) τr = 0.9τm, using hτ = 0.001.
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Figure : Log plots of phase error versus θ with fixed ω = 1/τm for (left column)
τr = 0.5τm, (right column) τr = 0.9τm, using hτ = 0.01. Legend indicates degree
M of the PC expansion.
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Figure : Log plots of phase error versus θ with fixed ω = 1/τm for (left column)
τr = 0.5τm, (right column) τr = 0.9τm, using hτ = 0.001. Legend indicates
degree M of the PC expansion.
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Conclusions
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Conclusions

Conclusions/Future Work

We have presented a random ODE model for polydispersive Debye
media

We described an efficient numerical method utilizing polynomial
chaos (PC) and finite difference time domain (FDTD)

We have shown (conditional) stability of the scheme via energy decay

We have used a discrete dispersion relation to compute phase errors

Exponential convergence in the number of PC terms was
demonstrated
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Appendix Polynomial Chaos

Polynomial Chaos: Simple example

Consider the first order, constant coefficient, linear IVP

ẏ + ky = g , y(0) = y0

with
k = k(ξ) = ξ, ξ ∼ N (0, 1), g(t) = 0.

We can represent the solution y as a Polynomial Chaos (PC) expansion in
terms of (normalized) orthogonal Hermite polynomials Hj :

y(t, ξ) =
∞∑
j=0

αj(t)φj(ξ), φj(ξ) = Hj(ξ).

Substituting into the ODE we get

∞∑
j=0

α̇j(t)φj(ξ) +
∞∑
j=0

αj(t)ξφj(ξ) = 0.
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Appendix Polynomial Chaos

Triple recursion formula

∞∑
j=0

α̇j(t)φj(ξ) +
∞∑
j=0

αj(t)ξφj(ξ) = 0.

We can eliminate the explicit dependence on ξ by using the triple recursion
formula for Hermite polynomials

ξHj = jHj−1 + Hj+1.

Thus
∞∑
j=0

α̇j(t)φj(ξ) +
∞∑
j=0

αj(t)(jφj−1(ξ) + φj+1(ξ)) = 0.
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Appendix Polynomial Chaos

Galerkin Projection onto span({φi}pi=0)

In order to approximate y we wish to find a finite system for at least the
first few αi .
We take the weighted inner product with the ith basis, i = 0, . . . , p,

∞∑
j=0

α̇j(t)〈φj , φi 〉W + αj(t)(j〈φj−1, φi 〉W + 〈φj+1, φi 〉W ) = 0,

where

〈f (ξ), g(ξ)〉W :=

∫
f (ξ)g(ξ)W (ξ)dξ.

By orthogonality, 〈φj , φi 〉W = 〈φi , φi 〉W δij , we have

α̇i 〈φi , φi 〉W + (i + 1)αi+1〈φi , φi 〉W + αi−1〈φi , φi 〉W = 0, i = 0, . . . , p.
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Appendix Polynomial Chaos

Deterministic ODE system

Let ~α represent the vector containing α0(t), . . . , αp(t).
Assuming α−1(t), αp+1(t), etc., are identically zero, the system of ODEs
can be written

~̇α + M~α = ~0,

with

M =


0 1
1 0 2

. . .
. . .

. . .
. . .

. . . p
1 0


The degree p PC approximation is y(t, ξ) ≈ yp(t, ξ) =

∑p
j=0 αj(t)φj(ξ).

The mean value E[y(t, ξ)] ≈ E[yp(t, ξ)] = α0(t).
The variance Var(y(t, ξ)) ≈

∑p
j=1 αj(t)2.
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Appendix Polynomial Chaos

Figure : Convergence of error with Gaussian random variable by Hermitian-chaos.
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Appendix Polynomial Chaos

Generalizations

Consider the non-homogeneous IVP

ẏ + ky = g(t), y(0) = y0

with
k = k(ξ) = σξ + µ, ξ ∼ N (0, 1),

then

α̇i + σ [(i + 1)αi+1 + αi−1] + µαi = g(t)δ0i , i = 0, . . . , p,

or the deterministic ODE system is

~̇α + (σM + µI )~α = g(t)~e1.

Note that the initial condition for the PC system is ~α(0) = y0 ~e1.
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Appendix Polynomial Chaos

Generalizations

For any choice of family of orthogonal polynomials, there exists a triple
recursion formula. Given the arbitrary relation

ξφj = ajφj−1 + bjφj + cjφj+1

(with φ−1 = 0) then the matrix above becomes

M =


b0 a1

c0 b1 a2

. . .
. . .

. . .
. . .

. . . ap
cp−1 bp
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Appendix Polynomial Chaos

Generalized Polynomial Chaos

Table : Popular distributions and corresponding orthogonal polynomials.

Distribution Polynomial Support

Gaussian Hermite (−∞,∞)
gamma Laguerre [0,∞)

beta Jacobi [a, b]
uniform Legendre [a, b]

Note: lognormal random variables may be handled as a non-linear function
(e.g., Taylor expansion) of a normal random variable.
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Appendix Polynomial Chaos

Numerical Approximation of Random Polarization

Could apply a quadrature rule to the integral in the expected value.
Results in a linear combination of individual Debye solves.

Alternatively, we can use a method which separates the time
derivative from the randomness and applies a truncated expansion in
random space, called Polynomial Chaos. Results in a linear system.
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Appendix Random Polarization

Random Polarization

We can apply Polynomial Chaos method to our random polarization

τ Ṗ + P = ε0(εs − ε∞)E , τ = τ(ξ) = rξ + r

resulting in
(rM + mI )~̇α + ~α = ε0(εs − ε∞)E ~e1 =: ~g

or
A~̇α + ~α = ~g .

The macroscopic polarization, the expected value of the random
polarization at each point (t, x), is simply

P(t, x ; F ) = α0(t, x).
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Appendix Discretization

Applying the central difference approximation, based on the Yee scheme,
Maxwell’s equations with conductivity and polarization included

ε
∂E

∂t
= −∂H

∂z
− σE − ∂P

∂t

and

µ
∂H

∂t
= −∂E

∂z

become

E
n+ 1

2
k − E

n− 1
2

k

∆t
= −1

ε

Hn
k+ 1

2

− Hn
k− 1

2

∆z
− σ

ε

E
n+ 1

2
k + E

n− 1
2

k

2
− 1

ε

P
n+ 1

2
k − P

n− 1
2

k

∆t

and
Hn+1
k+ 1

2

− Hn
k+ 1

2

∆t
= − 1

µ

E
n+ 1

2
k+1 − E

n+ 1
2

k

∆z
.

Note that while the electric field and magnetic field are staggered in time,
the polarization updates simultaneously with the electric field.
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Appendix Discretization

For τ Ṗ + P = εdE , once again using the central difference approximation
(explicit trapezoidal), we have

τ
P
n+ 1

2
k − P

n− 1
2

k

∆t
+

P
n+ 1

2
k + P

n− 1
2

k

2
= εd

E
n+ 1

2
k + E

n− 1
2

k

2
.

Solving for P
n+ 1

2
k in terms of E

n+ 1
2

k

P
n+ 1

2
k =

∆tεd

[
E
n+ 1

2
k + E

n− 1
2

k

]
+ (2τ −∆t)P

n− 1
2

k

2τ + ∆t

we can eliminate P
n+ 1

2
k from the E

n+ 1
2

k update step to get

E
n+ 1

2
k =

θ

1 + δ

[
Hn
k+ 1

2
− Hn

k− 1
2

]
+

1− δ
1 + δ

E
n− 1

2
k +

2∆t

ε(2τ + ∆t)(1 + δ)
P
n− 1

2
k

and

Hn+1
k+ 1

2

= − ∆t

µ∆x

[
E
n+ 1

2
k+1 − E

n+ 1
2

k

]
+ Hn

k+ 1
2

where θ = − ∆t
ε∆x and δ = σ∆t

2ε + ∆tεd
ε(2τ+∆t) .
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Appendix Discretization

Need a similar approach for discretizing the PC system

A~̇α + ~α = ~g .

Applying second order central differences, as before, to ~α = ~α(zk):

A
~αn+ 1

2 − ~αn− 1
2

∆t
+
~αn+ 1

2 + ~αn− 1
2

2
=
~gn+ 1

2 + ~gn− 1
2

2
.

Combining like terms gives

(2A + ∆tI )~αn+ 1
2 = (2A−∆tI )~αn− 1

2 + ∆t
(
~gn+ 1

2 + ~gn− 1
2

)
Note that we first solve the discrete electric field equation for E

n+ 1
2

k and

plug in here (in ~gn+ 1
2 ) to update ~α.
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Appendix Discretization

Solving for E
n+ 1

2
k in

E
n+ 1

2
k − E

n− 1
2

k

∆t
= −1

ε

Hn
k+ 1

2

− Hn
k− 1

2

∆z
− σ

ε

E
n+ 1

2
k + E

n− 1
2

k

2
− 1

ε

α
n+ 1

2
0,k − α

n− 1
2

0,k

∆t

we get

E
n+ 1

2
k =

θ

1 + δ

[
Hn
k+ 1

2
− Hn

k− 1
2

]
+

1− δ
1 + δ

E
n− 1

2
k − 1

ε(1 + δ)

[
α
n+ 1

2
0,k − α

n− 1
2

0,k

]
where now θ = − ∆t

ε∆x and δ = σ∆t
2ε .

We substitute this expression into the first element of ~gn+ 1
2 . Since α

n+ 1
2

0,k
now appears on the right hand side of the first row, we must move this
term to the left hand side.
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Appendix Discretization

Explicit Update Step

All other rows of our system stay the same, thus

(2Ã + ∆tI )~αn+ 1
2 = (2Ã−∆tI )~αn− 1

2 + ∆t
(
~̃gn− 1

2 + ~̃hn
)

where Ã = A except for εd∆t/(1 + δ) added to the (1, 1) element. We let

~̃gn− 1
2 =

2εd∆t

1 + δ
E
n− 1

2
k

and
~̃hn =

εd∆tθ

1 + δ

[
Hn
k+ 1

2
− Hn

k− 1
2

]
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Appendix Discretization

Updating Scheme

Thus given En− 1
2 , ~αn− 1

2 , and Hn for all k , we may compute the updated
variables by solving the following

(2Ã + ∆tI )~αn+ 1
2 = (2Ã−∆tI )~αn− 1

2 + ∆t
(
~̃gn− 1

2 + ~̃hn
)

E
n+ 1

2
k =

θ

1 + δ

[
Hn
k+ 1

2
− Hn

k− 1
2

]
+

1− δ
1 + δ

E
n− 1

2
k

− 1

ε(1 + δ)

[
α
n+ 1

2
0,k − α

n− 1
2

0,k

]
Hn+1
k+ 1

2

= − ∆t

µ∆x

[
E
n+ 1

2
k+1 − E

n+ 1
2

k

]
+ Hn

k+ 1
2

Note that (2Ã + ∆tI ) is tridiagonal and small.
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Appendix Discretization

Comments on Polynomial Chaos

Gives a simple and efficient method to simulate systems involving
distributions of parameters.

Works equally well in three spatial dimensions.

Limitation: choice of polynomials depends on type of distribution.

Need error estimates to be sure that a sufficient number of
polynomials is used in the expansion.
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