Modeling and Simulation of Electromagnetic Materials

Prof. Nathan L. Gibson

Department of Mathematics

Graduate Student Seminar
April 19, 2017
Projects

1. Electromagnetics
 - Maxwell's Equations
 - Dispersive Media
 - Numerical Analysis
 - Inverse Problems

2. Hydropower Reservoir Networks
 - River system and modeling equations
 - Optimal Control
 - Robust Optimization

3. Magnetohydrodynamics
 - Modeling
 - Numerical Methods
 - Inverse Problems
Acknowledgements

Collaborators

- H. T. Banks (NCSU)
- V. A. Bokil (OSU)
- W. P. Winfree (NASA)

Students

- Karen Barrese and Neel Chugh (REU 2008)
- Anne Marie Milne and Danielle Wedde (REU 2009)
- Erin Bela and Erik Hortsch (REU 2010)
- Megan Armentrout (MS 2011)
- Brian McKenzie (MS 2011)
- Duncan McGregor (PhD 2016)
Electromagnetics
- Maxwell’s Equations
- Polarization Models
- Distribution of Parameters
- Polynomial Chaos
- Results
Outline

1 Electromagnetics
 - Maxwell’s Equations
 - Polarization Models
 - Distribution of Parameters
 - Polynomial Chaos
 - Results

2 Conclusions
Outline

1 Electromagnetics
 - Maxwell’s Equations
 - Polarization Models
 - Distribution of Parameters
 - Polynomial Chaos
 - Results

2 Conclusions
Maxwell’s Equations

\[
\begin{align*}
\frac{\partial \mathbf{D}}{\partial t} + \mathbf{J} &= \nabla \times \mathbf{H} \quad \text{(Ampere)} \\
\frac{\partial \mathbf{B}}{\partial t} &= -\nabla \times \mathbf{E} \quad \text{(Faraday)} \\
\nabla \cdot \mathbf{D} &= \rho \quad \text{(Poisson)} \\
\nabla \cdot \mathbf{B} &= 0 \quad \text{(Gauss)}
\end{align*}
\]

\[\mathbf{E} = \text{Electric field vector} \quad \mathbf{D} = \text{Electric flux density}\]
\[\mathbf{H} = \text{Magnetic field vector} \quad \mathbf{B} = \text{Magnetic flux density}\]
\[\rho = \text{Electric charge density} \quad \mathbf{J} = \text{Current density}\]

With appropriate initial conditions and boundary conditions.
Maxwell’s equations are completed by constitutive laws that describe the response of the medium to the electromagnetic field.

\[
\begin{align*}
D &= \varepsilon E + P \\
B &= \mu H + M \\
J &= \sigma E + J_s
\end{align*}
\]

- **P** = Polarization \(\varepsilon = \) Electric permittivity
- **M** = Magnetization \(\mu = \) Magnetic permeability
- **J_s** = Source Current \(\sigma = \) Electric Conductivity
Complex permittivity

- We can usually define P in terms of a convolution

$$P(t, x) = g * E(t, x) = \int_0^t g(t - s, x; q)E(s, x)ds,$$

where g is the dielectric response function (DRF).

- In the frequency domain $\hat{D} = \hat{\varepsilon} \hat{E} + \hat{g}\hat{E} = \varepsilon_0\varepsilon(\omega) \hat{E}$, where $\varepsilon(\omega)$ is called the complex permittivity.

- $\varepsilon(\omega)$ described by the polarization model

- We are interested in ultra-wide bandwidth electromagnetic pulse interrogation of dispersive dielectrics, therefore we want an accurate representation of $\varepsilon(\omega)$ over a broad range of frequencies.
Dispersive Dielectrics

Debye Material

Input is five cycles (periods) of a sine curve.
Figure: Debye model simulations.
Dry skin data

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Real part of $\epsilon(\omega)$, ϵ, or the permittivity [GLG96].}
\end{figure}
Dry skin data

Figure: Imaginary part of $\varepsilon(\omega)/\omega$, σ, or the conductivity.
\[P(t, x) = g \ast E(t, x) = \int_0^t g(t - s, x; q)E(s, x)\, ds, \]

- Debye model [1929] \(q = [\epsilon_d, \tau] \)

\[g(t, x) = \epsilon_0 \epsilon_d / \tau \ e^{-t/\tau} \]

or \(\tau \dot{P} + P = \epsilon_0 \epsilon_d E \)

or \(\epsilon(\omega) = \epsilon_\infty + \frac{\epsilon_d}{1 + i\omega\tau} \)

with \(\epsilon_d := \epsilon_s - \epsilon_\infty \) and \(\tau \) a relaxation time.
\[\mathbf{P}(t, \mathbf{x}) = g \ast \mathbf{E}(t, \mathbf{x}) = \int_0^t g(t - s, \mathbf{x}; \mathbf{q}) \mathbf{E}(s, \mathbf{x}) ds, \]

- Debye model \([1929]\) \(\mathbf{q} = [\epsilon_d, \tau] \)

\[g(t, \mathbf{x}) = \epsilon_0 \epsilon_d / \tau \ e^{-t/\tau} \]

or

\[\tau \dot{\mathbf{P}} + \mathbf{P} = \epsilon_0 \epsilon_d \mathbf{E} \]

or

\[\epsilon(\omega) = \epsilon_\infty + \frac{\epsilon_d}{1 + i\omega \tau} \]

with \(\epsilon_d := \epsilon_s - \epsilon_\infty \) and \(\tau \) a relaxation time.

- Cole-Cole model \([1936]\) (heuristic generalization)

\(\mathbf{q} = [\epsilon_d, \tau, \alpha] \)

\[\epsilon(\omega) = \epsilon_\infty + \frac{\epsilon_d}{1 + (i\omega \tau)^{1-\alpha}} \]
Motivation

- The Cole-Cole model corresponds to a fractional order ODE in the time-domain and is difficult to simulate.
Motivation

- The Cole-Cole model corresponds to a fractional order ODE in the time-domain and is difficult to simulate.
- Debye is efficient to simulate, but does not represent permittivity well.

Empirical measurements suggest a log-normal or Beta distribution ([Wagner1913](#)) (but uniform is easier).
Motivation

- The Cole-Cole model corresponds to a fractional order ODE in the time-domain and is difficult to simulate.
- Debye is efficient to simulate, but does not represent permittivity well.
- Better fits to data are obtained by taking linear combinations of Debye models (discrete distributions), idea comes from the known existence of multiple physical mechanisms: multi-pole debye (like stair-step approximation).

Empirical measurements suggest a log-normal or Beta distribution ([Wagner 1913](#)), but uniform is easier.

Prof. Gibson (OSU)
Motivation

- The Cole-Cole model corresponds to a fractional order ODE in the time-domain and is difficult to simulate.
- Debye is efficient to simulate, but does not represent permittivity well.
- Better fits to data are obtained by taking linear combinations of Debye models (discrete distributions), idea comes from the known existence of multiple physical mechanisms: multi-pole debye (like stair-step approximation).
- An alternative approach is to consider the Debye model but with a (continuous) distribution of relaxation times [von Schweidler1907].
Motivation

- The Cole-Cole model corresponds to a fractional order ODE in the time-domain and is difficult to simulate.
- Debye is efficient to simulate, but does not represent permittivity well.
- Better fits to data are obtained by taking linear combinations of Debye models (discrete distributions), idea comes from the known existence of multiple physical mechanisms: multi-pole debye (like stair-step approximation).
- An alternative approach is to consider the Debye model but with a (continuous) distribution of relaxation times [von Schweidler1907].
- Empirical measurements suggest a log-normal or Beta distribution [Wagner1913] (but uniform is easier).
Figure: Real part of $\epsilon(\omega)$, ϵ, of the permittivity [REU2008].
Figure: Imaginary part of $\varepsilon(\omega)/\omega$, σ, or the conductivity [REU2008].
Distributions of Parameters

To account for the effect of possible multiple parameter sets \mathbf{q}, consider replacing the DRF with

$$h(t, \mathbf{x}; F) = \int_Q g(t, \mathbf{x}; \mathbf{q})dF(\mathbf{q}),$$

where Q is some admissible set and $F \in \mathcal{P}(Q)$. Then the polarization becomes:

$$\mathbf{P}(t, \mathbf{x}) = \int_0^t \int_Q g(t - s, \mathbf{x}; \mathbf{q})dF(\mathbf{q}) \mathbf{E}(s, \mathbf{x})ds.$$

Alternatively we can swap the order of integration

$$\mathbf{P}(t, \mathbf{x}) = \int_Q \int_0^t g(t - s, \mathbf{x}; \mathbf{q}) \mathbf{E}(s, \mathbf{x})ds dF(\mathbf{q})$$

and define the random polarization $\mathcal{P}(t, \mathbf{x}; F)$ to be the polarization corresponding to a random \mathbf{q}, thus the macroscopic polarization \mathbf{P} is understood to be the expected value of \mathcal{P}.
Random Polarization

For the Debye model the random polarization $\mathcal{P}(t, x; F)$ satisfies

$$\tau \dot{\mathcal{P}} + \mathcal{P} = \epsilon_0 \epsilon_d \mathbf{E}$$

where τ is a random variable with PDF $f(\tau)$, for example,

$$f(\tau) = \frac{1}{\tau_b - \tau_a}$$

for a uniform distribution $\mathcal{U}[\tau_a, \tau_b]$. The electric field depends on the macroscopic polarization, which in this example becomes

$$\mathbf{P}(t, x) = \frac{1}{\tau_b - \tau_a} \int_{\tau_a}^{\tau_b} \mathcal{P}(t, x; \tau) d\tau.$$
Polynomial Chaos

Apply the Polynomial Chaos method to approximate the random polarization

\[\tau \dot{\mathcal{P}} + \mathcal{P} = \varepsilon_0 \varepsilon_d E, \quad \tau = \tau(\xi) = r\xi + m, \quad \xi \in (-1, 1) \]

resulting in

\[(rM + ml) \dot{\alpha} + \bar{\alpha} = \varepsilon_0 \varepsilon_d E \bar{e}_1. \]
Apply the Polynomial Chaos method to approximate the random polarization

\[\tau \dot{\mathcal{P}} + \mathcal{P} = \epsilon_0 \epsilon_d E, \quad \tau = \tau(\xi) = r\xi + m, \quad \xi \in (-1, 1) \]

resulting in

\[(rM + ml) \dot{\bar{\alpha}} + \bar{\alpha} = \epsilon_0 \epsilon_d E \bar{e}_1. \]

The macroscopic polarization, the expected value of the random polarization at each point \((t, x)\), is simply

\[P(t, x; F) = \alpha_0(t, x). \]
Existence of PC Solutions

Theorem (REU2010)

For the beta-Jacobi chaos (including uniform-Legendre), there exists a unique solution to the system

\[A\dot{\alpha} + \alpha = \bar{g} \]

(with initial conditions) for any \(p \).

Proof.

Relies on the fact that the invertibility of \(A \) follows from \(\rho(M) < 1 \) and the assumption that \(\tau_\mu > \tau_\sigma \). This is physically reasonable as to disallow negative relaxation times.
Distributions, noise = 0.1, refinement = 1, perturb = -0.8

Initial J=983.713
Optimal J=1.25869
Actual J=1.25879

Comparison of initial to final distribution [Armentrout-G., 2011].
Figure: Log plots of phase error versus θ with fixed $\omega = 1/\tau_m$ for (left column) $\tau_r = 0.5\tau_m$, (right column) $\tau_r = 0.9\tau_m$, using $h_\tau = 0.001$. Legend indicates degree M of the PC expansion.
Outline

1 Electromagnetics
 - Maxwell’s Equations
 - Polarization Models
 - Distribution of Parameters
 - Polynomial Chaos
 - Results

2 Conclusions
We have presented a random ODE model for polydispersive Debye media, can be extended to many other important polarization models.
We have presented a random ODE model for polydisperse Debye media, can be extended to many other important polarization models.

We developed an efficient numerical method utilizing polynomial chaos (PC) and finite difference time domain (FDTD), can be extended to FEM, DG, etc.
Conclusions/Future Work

- We have presented a random ODE model for polydisperse Debye media, can be extended to many other important polarization models.
- We developed an efficient numerical method utilizing polynomial chaos (PC) and finite difference time domain (FDTD), can be extended to FEM, DG, etc.
- We have shown (conditional) stability of the scheme via energy decay.
We have presented a random ODE model for polydisperse Debye media, can be extended to many other important polarization models.

We developed an efficient numerical method utilizing polynomial chaos (PC) and finite difference time domain (FDTD), can be extended to FEM, DG, etc.

We have shown (conditional) stability of the scheme via energy decay.

We have used a discrete dispersion relation to compute phase errors.
We have presented a random ODE model for polydisperse Debye media, can be extended to many other important polarization models.

We developed an efficient numerical method utilizing polynomial chaos (PC) and finite difference time domain (FDTD), can be extended to FEM, DG, etc.

We have shown (conditional) stability of the scheme via energy decay.

We have used a discrete dispersion relation to compute phase errors.

Exponential convergence in the number of PC terms was confirmed.
REFERENCES

