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Electromagnetics Maxwell’s Equations

Maxwell’s Equations

∂D

∂t
+ J = ∇×H (Ampere)

∂B

∂t
= −∇× E (Faraday)

∇ ·D = ρ (Poisson)

∇ · B = 0 (Gauss)

E = Electric field vector

H = Magnetic field vector

ρ = Electric charge density

D = Electric flux density

B = Magnetic flux density

J = Current density

With appropriate initial conditions and boundary conditions.
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Electromagnetics Maxwell’s Equations

Constitutive Laws

Maxwell’s equations are completed by constitutive laws that describe the
response of the medium to the electromagnetic field.

D = εE + P

B = µH + M

J = σE + Js

P = Polarization

M = Magnetization

Js = Source Current

ε = Electric permittivity

µ = Magnetic permeability

σ = Electric Conductivity
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Electromagnetics Polarization Models

Complex permittivity

We can usually define P in terms of a convolution

P(t, x) = g ∗ E(t, x) =

∫ t

0
g(t − s, x;q)E(s, x)ds,

where g is the dielectric response function (DRF).

In the frequency domain D̂ = εÊ + ĝÊ = ε0ε(ω)Ê, where ε(ω) is
called the complex permittivity.

ε(ω) described by the polarization model

We are interested in ultra-wide bandwidth electromagnetic pulse
interrogation of dispersive dielectrics, therefore we want an accurate
representation of ε(ω) over a broad range of frequencies.
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Electromagnetics Polarization Models

Dispersive Dielectrics

Debye Material

Input is five cycles (periods) of a sine curve.
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Electromagnetics Polarization Models

Dispersive Media
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Figure: Debye model simulations.
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Electromagnetics Polarization Models

Dry skin data
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Figure: Real part of ε(ω), ε, or the permittivity [GLG96].
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Electromagnetics Polarization Models

Dry skin data
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Figure: Imaginary part of ε(ω)/ω, σ, or the conductivity.
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Electromagnetics Polarization Models

P(t, x) = g ∗ E(t, x) =

∫ t

0
g(t − s, x;q)E(s, x)ds,

Debye model [1929] q = [εd , τ ]

g(t, x) = ε0εd/τ e−t/τ

or τ Ṗ + P = ε0εdE

or ε(ω) = ε∞ +
εd

1 + iωτ

with εd := εs − ε∞ and τ a relaxation time.

Cole-Cole model [1936] (heuristic generalization)
q = [εd , τ, α]

ε(ω) = ε∞ +
εd

1 + (iωτ)1−α
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Electromagnetics Distribution of Relaxation Times

Motivation

The Cole-Cole model corresponds to a fractional order ODE in the
time-domain and is difficult to simulate

Debye is efficient to simulate, but does not represent permittivity well

Better fits to data are obtained by taking linear combinations of
Debye models (discrete distributions), idea comes from the known
existence of multiple physical mechanisms: multi-pole debye (like
stair-step approximation)

An alternative approach is to consider the Debye model but with a
(continuous) distribution of relaxation times [von Schweidler1907]

Empirical measurements suggest a log-normal or Beta distribution
[Wagner1913] (but uniform is easier)
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Electromagnetics Fit to dry skin data with uniform distribution
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Figure: Real part of ε(ω), ε, or the permittivity [REU2008].
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Electromagnetics Fit to dry skin data with uniform distribution
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Figure: Imaginary part of ε(ω)/ω, σ, or the conductivity [REU2008].
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Electromagnetics Distribution of Parameters

Distributions of Parameters

To account for the effect of possible multiple parameter sets q, consider
replacing the DRF with

h(t, x;F ) =

∫
Q
g(t, x;q)dF (q),

where Q is some admissible set and F ∈ P(Q).
Then the polarization becomes:

P(t, x) =

∫ t

0

∫
Q
g(t − s, x;q)dF (q) E(s, x)ds.

Alternatively we can swap the order of integration

P(t, x) =

∫
Q

∫ t

0
g(t − s, x;q) E(s, x)ds dF (q)

and define the random polarization P(t, x;F ) to be the polarization
corresponding to a random q, thus the macroscopic polarization P is
understood to be the expected value of P.
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Electromagnetics Distribution of Parameters

Random Polarization

For the Debye model the random polarization P(t, x;F ) satisfies

τ Ṗ + P = ε0εdE

where τ is a random variable with PDF f (τ), for example,

f (τ) =
1

τb − τa

for a uniform distribution U [τa, τb].
The electric field depends on the macroscopic polarization, which in this
example becomes

P(t, x) =
1

τb − τa

∫ τb

τa

P(t, x; τ)dτ.
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Electromagnetics Polynomial Chaos

Polynomial Chaos

Apply the Polynomial Chaos method to approximate the random
polarization

τ Ṗ + P = ε0εdE , τ = τ(ξ) = rξ + m, ξ ∈ (−1, 1)

resulting in
(rM + mI )~̇α + ~α = ε0εdE ~e1.

The macroscopic polarization, the expected value of the random
polarization at each point (t, x), is simply

P(t, x ;F ) = α0(t, x).
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τ Ṗ + P = ε0εdE , τ = τ(ξ) = rξ + m, ξ ∈ (−1, 1)

resulting in
(rM + mI )~̇α + ~α = ε0εdE ~e1.

The macroscopic polarization, the expected value of the random
polarization at each point (t, x), is simply

P(t, x ;F ) = α0(t, x).

Prof. Gibson (OSU) E&M GSS 2017 19 / 25



Electromagnetics Well-posedness Results

Existence of PC Solutions

Theorem (REU2010)

For the beta-Jacobi chaos (including uniform-Legendre), there exists a
unique solution to the system

A~̇α + ~α = ~g

(with initial conditions) for any p.

Proof.

Relies on the fact that the invertibility of A follows from ρ(M) < 1 and the
assumption that τµ > τσ. This is physically reasonable as to disallow
negative relaxation times.
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Electromagnetics Inverse Problem Numerical Results
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Electromagnetics Numerical Analysis Results
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Figure: Log plots of phase error versus θ with fixed ω = 1/τm for (left column)
τr = 0.5τm, (right column) τr = 0.9τm, using hτ = 0.001. Legend indicates
degree M of the PC expansion.
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Conclusions

Conclusions/Future Work

We have presented a random ODE model for polydispersive Debye
media, can be extended to many other important polarization models

We developed an efficient numerical method utilizing polynomial
chaos (PC) and finite difference time domain (FDTD), can be
extended to FEM, DG, etc.

We have shown (conditional) stability of the scheme via energy decay

We have used a discrete dispersion relation to compute phase errors

Exponential convergence in the number of PC terms was confirmed
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