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Abstract. Electromagneticwave propagation in complex dispersivemedia is governed
by the time dependent Maxwell’s equations coupled to equations that describe the
evolution of the induced macroscopic polarization. We consider “polydispersive” ma-
terials represented by distributions of dielectric parameters in a polarization model.
The work focuses on a novel computational framework for such problems involving
Polynomial Chaos Expansions as a method to improve the modeling accuracy of the
Debye model and allow for easy simulation using the Finite Difference Time Domain
(FDTD) method. Stability and dispersion analyzes are performed for the approach
utilizing the second order Yee scheme in two spatial dimensions.
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1 Introduction

A fundamental question in electromagnetics is how to model dispersion and dissipation
of the fields in complex materials such as biological tissue. This has most often led to
the use of Maxwell’s equations coupled with constitutive relationships for polarization.
The problem is even more difficult with noisy data or variability (heterogeneity) in the
material being interrogated. Some deterministic models have been generalized to an
extent that they seem to account for this variability, but there is some question as to
whether the resulting models are even physically realistic.

A recently rediscovered modeling framework allows uncertainty at the molecular
level through distributions of parameters representing molecular variability. Intensive
experimental efforts have been pursued in describing data for complex materials in the
frequency domain with distributions of dielectric parameters, especially relaxation times
in multiple Debye models. A significant amount of this work is reviewed in the sur-
vey paper by Foster and Schwan [27]. The corresponding time-domain inverse problems
were initially developed in [5] and examples for a one dimensional case were solved in [6]
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using finite elements for the forward simulation and quadrature for computing the ex-
pected value over a distribution. Our contribution here is to describe an approximation
approach, which utilizes the generalized Polynomial Chaos framework, in two and three
dimensions. This allows the efficient use of the finite difference time domain (FDTD)
method for solving the dispersive Maxwell’s Equations, eliminates the need for a sepa-
rate computation of expected values, and simplifies analysis of the model and numerical
methods. The resulting approach can be applied to realistic two and three dimensional
models of human tissue or geological media in an electromagnetic interrogation inverse
problem.

1.1 Background

Ultra-short pulsed electromagnetic fields are used in a wide variety of applications such
as radar, environmental and medical imaging to evaluate the internal structure of ob-
jects for detecting and characterizing anomalies. This is done by studying changes in
the dielectric properties (such as permittivity, conductivity, and relaxation times) of the
materials under consideration for example in the noninvasive evaluation of tissues and
organs in cancer detection, and nondestructive investigation of materials for cracks. Time
domain numerical simulations of wave propagation in dispersive materials can help in
understanding the short-pulse response of these media, and can be used to obtain thresh-
old levels of safe exposure of humans to high energy electromagnetic fields. These simu-
lations can also be used in inverse problem formulations for natural resource exploration,
among other applications. Thus, the numerical and computational analyses of such sys-
tems can provide great benefit in real world applications.

Microwave imaging for breast cancer detection has been considered in a numerical
context by several researchers (c.f., [25,55,56] and references therein) due to the enhanced
contrast that can be extracted through numerical inverse problem formulations over sig-
nal processing approaches. Likewise, there is active interest in microwave and other
frequency remote sensing of the environment for accurate modeling (e.g., of ocean cur-
rents), or resource exploration (c.f., [24, 47] and references therein).

The detection, reconstruction, and characterization of objects in dielectrics using elec-
tromagnetic interrogation has been the subject of intense research for at least the past two
decades. Numerical approaches generally fall into two categories: frequency-domain
and time-domain.

We consider here broadband pulse (c.f., [70]) interrogation so as to excite multiple
poles in the dielectric targets and to better distinguish between materials of interest. The
use of multiple frequencies prohibits effective use of frequency domain methods, thus
time domain approaches will be considered in modeling the interrogation problem. We
note that frequency domain inverse problems may still be helpful in providing a baseline
or initial approximation in an iterative inverse problem formulation.

In the context of time-domain forward simulations, the twomost popular approaches
are finite element method (FEM) [44,51] and finite difference method (FD) [58,59]. While
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FEMhas advantages for characterizing complex domains, the cost of rebuilding themesh
and solving an implicit system at each iteration of the inverse problem is prohibitive. For
this, and other reasons described below, we consider only finite difference methods in
this work. A comparison of FD methods to Discontinuous Galerkin (DG) methods for
Maxwell’s Equations can be found in [18].

Additionally, most of the work done on inverse scattering and material characteri-
zation has been done for non-dispersive dielectrics, implying non-frequency dependent
speed of propagation and attenuation. That is not to say that significant effort has not
been put forth for forward simulation of dispersive dielectrics (c.f., [1, 3, 7, 8, 41, 43, 46,
53, 57] among many others). Inverse problems for dispersive media are currently less
prevalent [4, 10, 28, 64].

Considering the above, we will examine finite difference time domain (FDTD) meth-
ods [52, 68] for dispersive media [36, 38, 39, 69]. While numerical simulation methods
have been developed for polydispersive (multiple pole) media such as biological tissue
and wet soil, these methods are based on heuristic models with limited physical justi-
fication. For example the Cole-Cole model [22, 54] is known to accurately describe the
dielectric response of a dispersive material over a wide range of frequencies. The model,
however, does not lend itself easily to time domain simulation methods such as the Finite
Difference Time Domain (FDTD) method or the Finite Element Method (FEM) (although
attempts exist, c.f., [19, 45], however these are complicated to implement). Instead the
physics-based Debye model (of which the Cole-Cole model is a non-physical, heuristic
generalization) is often used. However, simulations do not match data over any broad
range of frequencies.

In this work, we seek to avoid the difficulty of implementing the Cole-Cole model
by presenting a representation of dispersive mechanisms using distributions of parame-
ters within the Debye model [2]. Empirical measurements suggest a log-normal or Beta
distribution [17]. We modify the standard FDTD scheme to allow for distributions of di-
electric parameters in a polarization model, and approximate the solution by using the
Polynomial Chaos Expansion method.

We note that distributions of parameters inMaxwell’s equations has been treatedwith
Polynomial Chaos in [20], but this was not in the context of dispersive materials. The
authors assumed unknown parameters which resulted in random solutions to Maxwell’s
equations. The current effort utilizes randomness as a modeling approach and results in
a deterministic solution to Maxwell’s equations.

2 Maxwell-Debye Model

In this section we review the necessary details of Maxwell’s equations, which model the
time propagation of electromagnetic fields, and polarization models (including Debye),
which describe the material response to the fields. An energy decay property of the
Maxwell-Debye Model is given.
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2.1 Maxwell’s Equations

We begin by introducing Maxwell’s equations which govern the electric field E and the
magnetic field H in a domain D with charge density ρ (which we take to be zero). Thus
we first consider the system

∂B

∂t
+∇×E=0, in (0,T)×D, (2.1a)

∂D

∂t
+J−∇×H=0, in (0,T)×D, (2.1b)

∇·B=0, in (0,T)×D, (2.1c)

∇·D=ρ, in (0,T)×D, (2.1d)

E×n=0, on (0,T)×∂D, (2.1e)

E(0,x)=0, H(0,x)=0, in D. (2.1f)

The current J is composed of the source current Js and the conductive current Jc. Initial
conditions are specified in (2.1f), while Perfect Electrically Conducting (PEC) boundary
conditions are imposed in (2.1e). Within the domain we have constitutive relations that
relate the flux densities D, B and the conductive current Jc to the electric and magnetic
fields E and H.

The Constitutive Laws describe the response of the medium to the electromagnetic
field, including effects from polarization. These may assume the form

D=ǫ0ǫ∞E+P, (2.2a)

B=µH+M, (2.2b)

J=σE+Js, (2.2c)

where ǫ = ǫ0ǫ∞. In (2.2), D and E represent the electric flux density and the electric
field, respectively; P refers to the macroscopic polarization, M the magnetization, and Js
the source current density. The dielectric parameters are ǫ0, the electric permittivity of
free space, ǫ∞, the relative electric permittivity in the limit of infinite frequencies, µ, the
magnetic permeability, and σ is the electric conductivity (which we take to be zero for
simplicity).

Combining equations (2.1a) and (2.2b) under the assumptions that there is no magne-
tization and that µ=µ0 (i.e., free space permeability) gives,

µ0
∂H

∂t
=−∇×E. (2.3)

By combining equations (2.1b), (2.2a) and (2.2c) while neglecting the source term for sim-
plicity we get,

ǫ0ǫ∞

∂E

∂t
=−σE− ∂P

∂t
+∇×H. (2.4)
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2.2 Polarization Models

Our main focus in this presentation is the dielectric polarization P which we assume has
the general convolution form

P(t,x)= g⋆E(t,x)=
∫ t

0
g(t−s,x;q)E(s,x)ds, (2.5)

where g is the general dielectric response function (DRF), which can be thought of as rep-
resenting the memory effect caused by the dielectric. In every practical example (Debye,
Lorentz, etc.) DRFs are parameter dependent as well as time (and possibly space) depen-
dent; we represent this as g=g(t,x;q), where typically q contains parameters such as the
high frequency limit dielectric permittivity ǫ∞, the static permittivity ǫs, and relaxation
time τ. Examples of often-used DRFs are the Debye [4,17,23] defined in the time domain
by

g(t,x)=ǫ0(ǫs−ǫ∞)/τ e−t/τ, (2.6)

the Lorentz [4, 17, 37] given by

g(t,x)=ǫ0ω2
pe

−t/2τsin(ν0t)/ν0,

and the Cole-Cole [17, 22, 29, 35, 54] defined by

g(t,x)=L−1

{
ǫ0(ǫs−ǫ∞)

1+(sτ)α

}
=

1

2πi

∫ ζ+i∞

ζ−i∞

ǫ0(ǫs−ǫ∞)

1+(sτ)α
estds,

where L is the Laplace transform.
Substituting (2.5) into (2.2a) and taking the Laplace transform in time we get,

D̂=ǫ(ω)Ê (2.7)

where ω is the angular frequency and ǫ(ω) is the complex permittivity, which for the
Debye model becomes,

ǫ(ω)=ǫ∞+
ǫs−ǫ∞

1+iωτ
. (2.8)

The polarization in (2.5) defined by the Debye model (2.6) can be shown to be equiv-
alent to the solution of the ordinary differential equation (ODE),

τ
∂P

∂t
+P=ǫ0ǫdE, (2.9)

where ǫd = ǫs−ǫ∞. The Lorentz model corresponds to a second order ODE, while the
Cole-Cole model corresponds to the solution of a fractional order ODE model, the simu-
lations of which are not straight-forward. We refer to (2.3) and (2.4) coupled with (2.9) as
the Maxwell-Debye model.
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The above models implicitly assume that single parameter values are representative
of the dielectric response of materials. More realistically these parameters should be
modeled as random variables with probability distributions, which we explore below.
We note that the Cole-Cole model can be thought of as an approximation to the Debye
model with a distribution of relaxation times, as can be seen through a Mellin transform
of the Debye complex permittivity [17].

2.3 2D TE Maxwell-Debye Model

For simplicity in exposition and to facilitate analysis, we reduce the Maxwell-Debye
model to two spatial dimensions. We emphasize that themethods described below apply
in a straight-forward manner to the full three dimensional system.

To construct the 2D Transverse Electric (TE) Maxwell-Debye model we make the as-
sumption that no fields exhibit variation in the z direction, i.e., all partial derivatives
with respect to z are zero. The electric field and polarization each have two components,
E=(Ex,Ey)T,P=(Px,Py)T and the magnetic field has one component Hz=H. Combining
(2.9) with (2.3) and (2.4), and reducing to two dimensions, we get the following three
partial differential equations which we call the 2D Maxwell-Debye TE curl equations:

∂H

∂t
=− 1

µ0
curl E, (2.10a)

ǫ0ǫ∞

∂E

∂t
= curl H− ǫ0ǫd

τ
E+

1

τ
P, (2.10b)

∂P

∂t
=

ǫ0ǫd
τ

E− 1

τ
P, (2.10c)

where for a vector field, U=(Ux,Uy)T, the scalar curl operator is curl U=
∂Uy

∂x − ∂Ux
∂y , and

for a scalar field, V, the vector curl operator is curl V=
(

∂V
∂y ,− ∂V

∂x

)T
[50]. All the fields in

(2.10) are functions of position x=(x,y)T and time t.
The system (2.10) along with the PEC boundary conditions and initial conditions

E(x,0)=E0(x), P(x,0)=P0(x) and H(x,0)=H0(x) for x∈D⊂R
2 was shown to be well-

posed [14]. We recall the important results here for completeness and comparison to the
analysis of our proposed approach. To this end, we define the following two function
spaces:

H(curl,D)={u∈
(
L2(D)

)2
;curl u∈L2(D)}, (2.11)

H0(curl,D)={u∈H(curl,D),n×u=0}. (2.12)

Let (·,·)2 denote the L2 inner product and ||·||2 the corresponding norm. Multiplying

(2.10a) by v∈ L2(D), (2.10b) by u∈H0(curl,D), and (2.10c) by w∈
(
L2(D)

)2
, integrating

over the domain D and applying Green’s formula for the curl operator

(curl H,u)=(H,curl u), ∀u∈H0(curl,D), (2.13)
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we obtain the weak formulation(
∂H

∂t
,v

)

2

=

(
− 1

µ0
curl E,v

)

2

, (2.14a)

(
ǫ0ǫ∞

∂E

∂t
,u

)

2

=(H,curl u)2−
(ǫ0ǫd

τ
E,u

)

2
+

(
1

τ
P,u

)

2

, (2.14b)

(
∂P

∂t
,w

)

2

=
(ǫ0ǫd

τ
E,w

)

2
−
(
1

τ
P,w

)

2

. (2.14c)

The following theorem shows the stability of the 2D TE Maxwell-Debye model (2.10) by
showing that the model exhibits energy decay [42].

Theorem 2.1. Let D⊂R
2 and suppose that E∈C(0,T;H0(curl,D))∩C1(0,T;(L2(D))2), P∈

C1(0,T;
(
L2(D)

)2
), and H(t)∈C1(0,T;L2(D)) are solutions of the weak formulation (2.14) for

the Maxwell-Debye system (2.10) along with PEC boundary conditions. Then the system exhibits
energy decay,

E(t)≤E(0) ∀t≥0, (2.15)

where the energy E(t) is defined as

E(t)=
(∥∥∥

√
µ0 H(t)

∥∥∥
2

2
+
∥∥∥
√

ǫ0ǫ∞ E(t)
∥∥∥
2

2
+
∥∥∥

1√
ǫ0ǫd

P(t)
∥∥∥
2

2

) 1
2

. (2.16)

In [42], it is also shown that the Gauss laws (2.1c), (2.1d) are satisfied by the Maxwell-
Debye system if the initial fields are divergence free.

3 Maxwell-Random Debye

The macroscopic polarization model (2.5) can be derived from microscopic dipole, elec-
tron cloud, etc., formulations by passing to a limit over the molecular population. How-
ever, such derivations tacitly assume that one has similar individual (molecular, dipole,
etc.) parameters; that is, all dipoles, molecules, “electron clouds”, etc., have the same re-
laxation parameters, plasma frequencies, etc. Historically, such models based on molecu-
lar level homogeneity throughout the material have often not performed well when try-
ing to compare models with experimental data. Indeed, in 1907 Von Schweidler [17, 62]
observed the need to assumemultiple relaxation timeswhen considering experimental data
and in 1913 Wagner [17, 63] proposed continuous distributions of relaxation times.

In the past half century intensive experimental efforts [26,29–32,35,49] have been pur-
sued in describing data for complex materials with distributions of dielectric parameters
(especially relaxation times in multiple Debye [26] or multiple Lorentz [37] mechanisms)
in the frequency domain. A significant amount of this work is reviewed in the survey
paper by Foster and Schwan [26]. There are now incontrovertible experimentally based
arguments for distributions of relaxation parameters in mechanisms for heterogeneous
materials.
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3.1 Maxwell-Random Debye Model Formulation

We may assume that the dielectric parameters ǫ∞ and ǫs are constant and known. The
usual Debye model presumes that the material may be sufficiently defined by a single re-
laxation parameter τ, which is generally not the case. In order to account for uncertainty
in the polarization mechanisms, we allow for a distribution of relaxation parameters,
and subsequently refer to these types of materials as polydispersive. Thus, we define our
polarization model in terms of a distribution-dependent dielectric response function h

P(t,x;F)=
∫ t

0
h(t−s,x;F)E(s,x)ds, (3.1)

where h is determined by a family of polarization laws each described by a different
parameter τ, and therefore is given by

h(t,x;F)=
∫

Ω
g(t,x;τ)dF(τ),

where Ω=[τa,τb]⊂ (0,∞). In particular, if the distribution F were discrete, consisting of
a single relaxation parameter, then we would again have (2.9). In the case when τ has a
uniform distribution, dF(τ)= f (τ)dτ with

f (τ)=
1

τb−τa
.

The macroscopic electric polarization becomes

P(t,x)=
∫ t

0

[∫

Ω
g(t−s,x;τ)dF(τ)

]
E(s,x)ds,

or, interchanging integrals, we have

P(t,x)=
∫

Ω
P(t,x;τ)dF(τ)=E[P ], (3.2)

where

P(t,x;τ)=
∫ t

0
g(t−s,x;τ)E(s,x)ds

is the random polarization due to the random relaxation parameter τ. The random polar-
ization is the microscopically chaotic polarization that is influenced by distributions of
τ. We take the macroscopic polarization, which appears in Maxwell’s equations via the
constitutive laws, to be the expected value of the random polarization. In the case of the
Debye model, the random polarization can be expressed as the solution to a first order
random ordinary differential equation (RODE) where the relaxation time τ is modeled as a
random variable

τ
∂P
∂t

+P=ǫ0ǫdE. (3.3)
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Remark 3.1. Existence and uniqueness of solutions to a weak formulation of the 1D ver-
sion of the Maxwell-Random Debye problem, as well as continuous dependence of (E,Ė)
on F in the Prohorov metric was shown in [5].

Remark 3.2. A bi-modal (mixture distribution) model may be derived in a similar fash-
ion. This is the random analog to multi-pole Debye models. Consider that the polariza-
tion is driven by two distinct mechanisms, one with a dielectric distribution determined
by mean µ1 and standard deviation σ1, and the other determined by mean µ2 and stan-
dard deviation σ2. Then we may define F1(τ;µ1,σ1) and F2(τ;µ2,σ2) as distributions and
let our macroscopic electric polarization be a function of some combination of these dis-
tributions (e.g., determined by the relative volume percentage of each of two substances
in a material). Thus if dF(τ)=β1dF1(τ)+β2dF2(τ) then we again have the representation
(3.2).

Remark 3.3 (Distribution Parameter Fit to Data). When random dielectric parameters
are assumed in the Maxwell system, the result is a system of partial differential equa-
tions where the solutions depend on probability measures. These measures are now the
“parameters” that characterize thematerial dielectric propertieswhich onemust estimate
with data or identify in interrogation problems.

One may use an inverse problem formulation (e.g., non-linear least squares method)
to determine the correct distribution of τ. This has been done in the time domain using
direct simulation of the Maxwell-Random Debye model [6] and via Induced Polarization
[60].

More commonly, the distribution parameters are fit in the frequency domain using
complex permittivity measurements. The most popular of these approaches is the multi-
pole Debyemodel [35,40], which is even used to approximate non-Debye poles due to the
simplicity of the forward simulation of the Maxwell-Debye model. (We note that while
many materials exhibit multiple polarization mechanisms and therefore have distinct re-
laxation poles, the multi-pole approach is commonly used to approximate single poles,
in which case we understand these to be discrete distribution approximations to a true
continuous distribution of parameters.) Other approaches include non-parametric [12], a
parameterized Cole-Cole distribution [61], and a parameterized uniform Random Debye
model [9]. In the latter, the uniform Debye was shown to be nearly as accurate as the
single Cole-Cole model for dry skin permittivity data [29], which is significant in that the
Cole-Cole model is difficult to simulate [19].

In a polydisperse Debye material, we then have the following Maxwell-Random De-
bye problem: find E,H,P with Ew∈C(0,T;H0(curl,D))∩ C1(0,T;L2(D)), H∈C1(0,T;L2(D)),
and Pw ∈ C1(0,T;L2(Ω)⊗L2(D)), for each spatial component w = {x,y}, such that F-
almost everywhere in Ω (or almost surely), the following equations (2D TE Maxwell-
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Random Debyemodel) hold

∂H

∂t
=− 1

µ0
curl E, (3.4a)

ǫ0ǫ∞

∂E

∂t
= curl H− ∂P

∂t
, (3.4b)

τ
∂P
∂t

+P=ǫ0ǫdE, (3.4c)

For ease of notation, we introduce theHilbert spaceVF=(L2(Ω))2⊗(L2(D))2 equipped
with an inner product and norm as follows

(u,v)F=E[(u,v)2],

‖u‖2F=E[‖u‖22].

3.2 Stability Result

The following theorem shows the stability of the 2D TE Maxwell-Random Debye model,
(3.4) along with (3.2), by showing that the model exhibits energy decay. The weak for-
mulation consists of (2.14a) along with

(
ǫ0ǫ∞

∂E

∂t
,u

)

2

=(H,curl u)2−
(

∂P

∂t
,u

)

2

, (3.5)

(
∂P
∂t

,w

)

F

=
(ǫ0ǫd

τ
E,w

)

F
−
(
1

τ
P ,w

)

F

(3.6)

for u∈H0(curl,D)2 and w∈V2
F .

Theorem 3.1 (EnergyDecay for theMaxwell-RandomDebye System). LetD⊂R
2 and sup-

pose that E∈C(0,T;H0(curl,D))∩C1(0,T;(L2(D))2),P∈C1(0,T;(VF)
2), and H∈C1(0,T;L2(D))

are solutions of the weak formulation for the 2D Maxwell-Random Debye system (2.14a), (3.5)
and (3.6) along with PEC boundary conditions. Then the system exhibits energy decay,

E(t)≤E(0) ∀t≥0, (3.7)

where the energy E(t) is defined as

E(t)=
(∥∥∥

√
µ0 H(t)

∥∥∥
2

2
+
∥∥∥
√

ǫ0ǫ∞ E(t)
∥∥∥
2

2
+
∥∥∥

1√
ǫ0ǫd

P(t)
∥∥∥
2

F

) 1
2

. (3.8)

Proof. The proof is straight-forward after replacing inner products in the proof of The-
orem 2.1 [42] with (·,·)F and norms with ‖·‖F . For completeness we show the details
below.
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By choosing v=H, u=E, and w=P in (2.14a), (3.5) and (3.6), and adding all three
equations into the time derivative of the definition of E2, we obtain

1

2

dE2(t)

dt
=−

(
curl E,H

)

2
+
(
H,curl E

)

2
−
(∂P

∂t
,E
)

2
+
( 1

τ
E,P

)

F
−
( 1

ǫ0ǫdτ
P ,P

)

F

=−
(
curl E,H

)

2
+
(
H,curl E

)

2
−
(ǫ0ǫd

τ
E,E

)

F
+
( 1

τ
P ,E

)

F

+
( 1

τ
E,P

)

F
−
( 1

ǫ0ǫdτ
P ,P

)

F

=−ǫ0ǫd

( 1
τ
E,E

)

F
+2
( 1

τ
P ,E

)

F
− 1

ǫ0ǫd

( 1
τ
P ,P

)

F

=
−1

ǫ0ǫd

∥∥∥∥
1

τ
(P−ǫ0ǫdE)

∥∥∥∥
2

F

.

Thus, we finally have

dE2(t)

dt
=

−2

ǫ0ǫd

∥∥∥∥
1

τ
(P−ǫ0ǫdE)

∥∥∥∥
2

F

≤0. (3.9)

In particular, we have

dE(t)
dt

=
−1

ǫ0ǫdE(t)

∥∥∥∥
1

τ
(P−ǫ0ǫdE)

∥∥∥∥
2

F

≤0. (3.10)

Therefore the energy, E(t), is decreasing and E(t)≤E(0) ∀t>0.

3.3 Dispersion Relation

The following theorem gives the dispersion relation for the Maxwell-Random Debye
model, which will be compared to the fully discretized version to determine any nu-
merical dispersion error.

Theorem 3.2. The exact dispersion relation for the system (3.4) is given by

ω2

c2
ǫ(ω)= |~k|2, (3.11)

where the expected complex permittivity is given by

ǫ(ω)=ǫ∞+ǫdE

[
1

1−iωτ

]
. (3.12)

Here,~k is the wave number and c=1/
√

µ0ǫ0 is the speed of light in free space. This
is the same form as for the non-random Debye model in that the expectation in that case
is the identity.
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Proof. As the proof is similar in 1 and 3 dimensions, we describe only the 2D case here.
Letting H=Hz, we have the 2D Maxwell-Random Debye TE scalar equations:

∂H

∂t
=

1

µ0

(
∂Ex

∂y
− ∂Ey

∂x

)
, (3.13a)

ǫ0ǫ∞

∂Ex

∂t
=

∂H

∂y
− ∂Px

∂t
, (3.13b)

ǫ0ǫ∞

∂Ey

∂t
=−∂H

∂x
− ∂Py

∂t
, (3.13c)

τ
∂Px

∂t
+Px=ǫ0ǫdEx (3.13d)

τ
∂Py

∂t
+Py=ǫ0ǫdEy, (3.13e)

along with (3.2).
We assume plane wave solutions of the form

V= Ṽei(kxx+kyy−ωt),

and let ~x=(x,y)T and~k=(kx,ky)T. Then (3.13) becomes

−iωH̃=
1

µ0

(
iky Ẽx−ikx Ẽy

)
, (3.14a)

−ǫ0ǫ∞iωẼx= iky H̃−(−iωP̃x), (3.14b)

−ǫ0ǫ∞iωẼy=−ikx H̃−(−iωP̃y), (3.14c)

−iωτP̃x+P̃x=ǫ0ǫdẼx (3.14d)

−iωτP̃y+P̃y=ǫ0ǫdẼy. (3.14e)

By (3.14d) we have

P̃x=E[P̃x]=ǫ0ǫdẼxE

[
1

1−iωτ

]
. (3.15)

Substituting into (3.14b) we have

−ǫ0ǫ∞iωẼx= iky H̃+

(
iωǫ0ǫdẼxE

[
1

1−iωτ

])
,

−iωǫ0

(
ǫ∞+ǫdE

[
1

1−iωτ

])
Ẽx= ikyH̃,

−iωǫ0ǫ(ω)Ẽx= ikyH̃. (3.16)

In the above we have used the definition of the complex permittivity from (3.12). Simi-
larly combining (3.14e) and (3.14c) gives

−iωǫ0ǫ(ω)Ẽy=−ikx H̃. (3.17)
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Substituting both (3.16) and (3.17) into (3.14a) yields

−iωH̃=
1

µ0

(
(iky)2

−iωǫ0ǫ(ω)
+

(ikx)2

−iωǫ0ǫ(ω)

)
H̃,

−(iω)2µ0ǫ0ǫ(ω)= k2y+k2x

ω2

c2
ǫ(ω)= |~k|2.

Remark 3.4. In the case of a uniform distribution on [τa,τb], the expected complex per-
mittivity has an analytic form since

E

[
1

1−iωτ

]
=

1

(τb−τa)ω

[
arctan(ωτ)−i

1

2
ln
(
1+(ωτ)2

)]τ=τb

τ=τa

.

4 Maxwell-PC Debye

Toward a solution to the Maxwell-Random Debye model, one needs an efficient method
for the computation of the expected value of the random polarization. One could apply
a quadrature rule to the integral in the expected value [6]. This approach results in a lin-
ear combination of individual Debye models, and is equivalent to the multi-pole Debye
approximation [35]. Alternatively, we propose to use a spectral method in random space,
called polynomial chaos (PC) [65–67]. Polynomial chaos is a method for expressing stochas-
tic solutions in terms of truncated expansions of orthogonal polynomials of the random
inputs. The family of orthogonal polynomials is generally chosen to be orthogonal with
respect to the probability measure corresponding to the random inputs. The popular-
ity of the method is due to the potential for exponential convergence of the L2 error in
terms of the number of orthogonal polynomials required in the truncated expansion. The
method is especially efficient for low random dimension.

The PC approach results in a deterministic, linear system of auxiliary ordinary differ-
ential equations (coupled to Maxwell’s Equations) for an approximation to the random
polarization given in (3.3). Specifically, in each spatial dimension (E=Ej, for j=x,y,z) we
have

τṖ+P=ǫ0ǫdE, τ=τ(ξ)=τrξ+τm,

where the relaxation time is modeled as a random variable with, e.g., ξ ∼ Beta(a,b) or
uniform on [−1,1], and where τm and τr are shift and scaling parameters, respectively.
Then the PC system is (after a Galerkin projection onto the finite dimensional random
space spanned by the first p+1 orthogonal polynomials)

(τrM+τm I)~̇α+~α=ǫ0ǫdEê1
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or
A~̇α+~α=~f . (4.1)

In the above,

M=




b0 a1
c0 b1 a2

. . .
. . .

. . .
. . .

. . . ap
cp−1 bp



,

where the diagonals come from the coefficients of the triple recursion formula for the
choice of family of orthogonal polynomials [34]

ξφj= ajφj−1+bjφj+cjφj+1

(with the assumption that φ−1≡0 and φ0≡1). The solution vector~α=[α0,. . .,αp]T repre-
sents the truncated expansion up to degree p of the random polarization in the basis of
orthogonal polynomials

P(t,x,ξ)=
∞

∑
i=0

αi(t,x)φi(ξ). (4.2)

See [11] for the details of the derivation.
Note that the deterministic value ~f forces the system and is dependent on the electric

field governed by Maxwell’s equations. Maxwell’s equations are coupled to the macro-
scopic polarization, i.e., the expected value of the random polarization at each point (t,x),
which is well approximated by

P(t,x;F)=E[P ]≈α0(t,x). (4.3)

If the chosen set of orthogonal polynomials are orthogonal with respect to the density
function of the random variable ξ, then the error in this approximation of the expected
value converges exponentially with p (as we demonstrated in [11]). Thus the Maxwell-
PC Debye model consists of replacing the RODE (3.3) in the Maxwell-Random Debye
model with the deterministic system of ODEs (4.1) and making the approximation (4.3),
for example, in two dimensions we have the 2D Maxwell-PC Debye TE scalar equations

∂H

∂t
=

1

µ0

(
∂Ex

∂y
− ∂Ey

∂x

)
, (4.4a)

ǫ0ǫ∞

∂Ex

∂t
=

∂H

∂y
− ∂α0,x

∂t
, (4.4b)

ǫ0ǫ∞

∂Ey

∂t
=−∂H

∂x
− ∂α0,y

∂t
, (4.4c)

A~̇αx+~αx=~fx, (4.4d)

A~̇αy+~αy=~fy. (4.4e)
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We remark that for Beta random variables, Jacobi polynomials are used, and for uni-
form random variables, Legendre polynomials are used [67]. As an example, if we choose
a uniform random variable, then for the case when p=2 we obtain the following system
for the PC Debye model:

A=




τm
1
3τr 0

τr τm
2
5τr

0 2
3τr τm


.

However, if ξ∼ Beta(2,5), and p=2, then

A=




1
3τr+τm

2
5τr 0

2
9τr

7
33τr+τm

14
33τr

0 18
55τr

21
143τr+τm


.

Clearly as τr → 0 then the PC Debye model converges to a diagonal, uncoupled Debye
ODE with a single relaxation time of τ = τm, which can be thought of as modeled by a
delta distribution.

Remark 4.1 (The Invertibility of A). In order to solve the PC system for ~̇α the matrix A
must be non-singular. This is true as long as τr < τm since the eigenvalues of M are in
(−1,1) [34], and therefore the eigenvalues of A are greater than τm−τr, thus A is in fact
positive definite.

5 Maxwell-PC Debye-FDTD

We now describe a discretization of the Maxwell-PC Debye model. We note that any spa-
tial or temporal discretization scheme could be used, independently of the spectral ap-
proach in random space employed here. The purpose in choosing an FDTDdiscretization
is both for ease of comparison with the vast literature on FDTDmethods [13,14,16,21,33],
as well as for practical terms in that FDTD methods are extremely computationally effi-
cient, even in three dimensions, while being simple to implement, and therefore most
likely to be used by practitioners in actual simulations of polydispersive materials. We
emphasize that the discretization of the Maxwell-PC Debye differs from a discretization
of a Maxwell-Debye system only in the treatment of the auxiliary differential equation.

5.1 Discretization

Below we follow the setup described in [14] for the development of the Yee scheme for
dispersive materials. Consider the spatial domain Ω=[0,a]×[0,b]⊂R

2 and time interval
[0,T] with a, b, T > 0 and spatial step sizes ∆x > 0 and ∆y > 0 and time step ∆t > 0.
The discretization of the intervals [0,a], [0,b], and [0,T] is performed as follows. Define
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L= a/∆x, J=b/∆y and N=T/∆t. For ℓ, j,n∈N we consider the discretizations

0= x0≤ x1≤···≤ xℓ≤···≤ xL= a, (5.1)

0=y0≤y1≤···≤yj≤···≤yJ=b, (5.2)

0= t0≤ t1≤···≤ tn≤···≤ tN=T, (5.3)

where xℓ = ℓ∆x, yj = j∆y, and tn = n∆t for 0≤ ℓ≤ L, 0≤ j≤ J, and 0≤ n≤ N. Define

(xα,yβ,t
γ)=(α∆x,β∆y,γ∆t) where α is either ℓ or ℓ+ 1

2 , β is either j or j+ 1
2 , and γ is either

n or n+ 1
2 with ℓ, j,n∈N. The operator splitting schemes [21], like the Yee scheme, stagger

the electric and magnetic fields in space. Fields Ex, Ey, and H are staggered in the x and
y directions. We define the discrete meshes

τEx

h :=
{(

x
ℓ+ 1

2
,yj

)
|0≤ ℓ≤ L−1,0≤ j≤ J

}
, (5.4)

τ
Ey

h :=
{(

xℓ,yj+ 1
2

)
|0≤ ℓ≤ L,0≤ j≤ J−1

}
, (5.5)

τH
h :=

{(
x
ℓ+ 1

2
,yj+ 1

2

)
|0≤ ℓ≤ L−1,0≤ j≤ J−1

}
, (5.6)

to be the sets of spatial grid points on which the Ex, Ey, and H fields, respectively, will
be discretized. The components Px and Py of the polarization are discretized at the same
spatial locations as the fields Ex and Ey, respectively. For the time discretization, the
components Ex,Ey,Px,Py are all discretized at integer time steps tn for 0≤ n≤N. In the
Yee scheme, the magnetic field, H, is staggered in time with respect to Ex and Ey and

discretized at tn+
1
2 for 0≤n≤N−1.

Let U be one of the field variables H, Ex, Ey, Px or Py, and (xα,yβ)∈ τH
h ,τEx

h or τ
Ey

h ,

and γ be either n or n+ 1
2 with γ ≤ N. We define the grid functions or the numerical

approximations

U
γ
α,β≈U(xα,yβ,t

γ).

We will also use the notation U(tγ) to denote the continuous solution on the domain Ω

at time tγ, and the notation Uγ to denote the corresponding grid function on its discrete
mesh at time tγ.

We define the centered temporal difference operator and a discrete time averaging
operation as

δtU
γ
α,β :=

U
γ+ 1

2
α,β −U

γ− 1
2

α,β

∆t
, (5.7)

U
γ
α,β :=

U
γ+ 1

2
α,β +U

γ− 1
2

α,β

2
, (5.8)
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and the centered spatial difference operators in the x and y direction, respectively as

δxU
γ
α,β :=

U
γ

α+ 1
2 ,β

−U
γ

α− 1
2 ,β

∆x
, (5.9)

δyU
γ
α,β :=

U
γ

α,β+ 1
2

−U
γ

α,β− 1
2

∆y
. (5.10)

Next, we define the following staggered l2 normed spaces

VH :=
{
U :τH

h −→R | U=(Ul+ 1
2 ,j+

1
2
),‖U‖E<∞

}
, (5.11)

VE :=

{
F :τEx

h ×τ
Ey

h −→R
2 | F=(Fx

l+ 1
2 ,j
,Fy

l,j+ 1
2

)T,‖F‖E<∞

}
, (5.12)

where the discrete L2 grid norms are defined as

‖F‖2E=∆x∆y
L−1

∑
ℓ=0

J−1

∑
j=0

(
|Fx

ℓ+ 1
2 ,j
|2+|Fy

ℓ,j+ 1
2

|2
)
,∀ F∈VE, (5.13)

‖U‖2H=∆x∆y
L−1

∑
ℓ=0

J−1

∑
j=0

|U
ℓ+ 1

2 ,j+
1
2
|2,∀ U∈VH, (5.14)

with corresponding inner products

(F,G)E=∆x∆y
L−1

∑
ℓ=0

J−1

∑
j=0

(
Fx

ℓ+ 1
2 ,j
Gx

ℓ+ 1
2 ,j
+Fy

ℓ,j+ 1
2

Gy
ℓ,j+ 1

2

)
,∀ F,G∈VE, (5.15)

(U,V)H=∆x∆y
L−1

∑
ℓ=0

J−1

∑
j=0

U
ℓ+ 1

2 ,j+
1
2
V
ℓ+ 1

2 ,j+
1
2
,∀ U,V∈VH. (5.16)

Finally, we define discrete curl operators on the staggered l2 normed spaces as

curlh :VE−→VH

curlhF :=δxFy−δyFx.
(5.17)

and

curlh :VH−→VE

curlhU :=(δyU,−δxU)T.
(5.18)

The discrete differential operators mimic properties that are satisfied by their continuous
counterparts. In particular, if the PEC conditions (2.1e) satisfied on the discrete Yeemesh,
i.e. ∀ F∈VE,

Fx
ℓ+ 1

2
,0=Fx

ℓ+ 1
2 ,J
=0, 0≤ ℓ≤ L, (5.19)

Fy
0,j+ 1

2

=Fx
L,j+ 1

2

=0, 0≤ j≤ J, (5.20)
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then discrete integrations by parts yields [14],

(curlhE,H)H=(E,curlhH)E. (5.21)

Thus, the discrete versions of the curl operators remain adjoint to each other, which is
essential for obtaining discrete energy estimates.

5.2 Yee Scheme for Maxwell-PC Debye System

To discretize the system (4.4), we use the same staggering in space and time as is com-
monly used for the free space equations. We discretize~αx and~αy at the same spatial grid
nodes as Ex and Ey, respectively, and evaluate each at integer time steps. The time dis-
cretization of the PC Debye system (4.1) is performed similarly to the deterministic ODE
in order to preserve second order accuracy in time. In addition, the lower order terms
are discretized using a semi-implicit approximation (averaging). This allows the update
steps to be essentially explicit, requiring only a tridiagonal matrix solve at each time step
(which can be factored with LU factorization initially and thus only requires forward and
back substitution at each time step). Using the operators defined in (5.7)–(5.10), the Yee
scheme for the Maxwell-PC Debye system consists of the following discrete equations:

δtH
n
ℓ+ 1

2 ,j+
1
2
=

1

µ0

(
δyE

n
x
ℓ+ 1

2 ,j+
1
2

−δxE
n
y
ℓ+ 1

2 ,j+
1
2

)
, (5.22a)

ǫ0ǫ∞δtE
n+ 1

2
x
ℓ+ 1

2 ,j
=δyH

n+ 1
2

ℓ+ 1
2 ,j
−δtα

n+ 1
2

0,x
ℓ+ 1

2 ,j
, (5.22b)

ǫ0ǫ∞δtE
n+ 1

2
y
ℓ,j+ 1

2

=−δxH
n+ 1

2

ℓ,j+ 1
2

−δtα
n+ 1

2
0,y

ℓ,j+ 1
2

, (5.22c)

Aδt~α
n+ 1

2
x
ℓ+ 1

2 ,j
= f

n+ 1
2

x
ℓ+ 1

2 ,j
−~αn+ 1

2
x
ℓ+ 1

2 ,j
, (5.22d)

Aδt~α
n+ 1

2
y
ℓ,j+ 1

2

= f
n+ 1

2
y
ℓ,j+ 1

2

−~αn+ 1
2

y
ℓ,j+ 1

2

. (5.22e)

We can re-write this systemmore compactly in vector form as

δtH
n+

1

µ0
(curlhE)

n=0, on τH
h (5.23a)

ǫ0ǫ∞δtE
n+ 1

2 =(curlhH)n+
1
2 −δtff

n+ 1
2

0 , on τEx

h ×τ
Ey

h , (5.23b)

Aδt~α
n+ 1

2 = f
n+ 1

2 −~αn+ 1
2 , on τEx

h ×τ
Ey

h , (5.23c)

where αn
0 ∈VE, while the grid function~α is taken to be from the following staggered l2

normed space

Vα :=
{
~α :τEx

h ×τ
Ey

h −→R
2×R

p+1
∣∣∣~α=[α0,. . .,αp],αk∈VE,‖~α‖α<∞

}
,
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where the discrete L2 grid norm is defined as

‖~α‖2α=
p

∑
k=0

‖αk‖2E, ∀~α∈Vα,

with a corresponding inner product

(~α,~β)α=
p

∑
k=0

(
αk,βk

)

E
, ∀~α,~β∈Vα.

5.3 Energy Decay and Stability

Here we show energy decay properties [13,15] of the discreteMaxwell-PC Debye System.
Energy decay implies that the method is (conditionally) stable and hence convergent. We
note that splitting methods which achieve energy conservation and therefore uncondi-
tional stability [21, 33], are not applicable in lossy media. However, there are energy
preserving splitting methods [16] for dispersive media which are unconditionally stable.
These methods are implicit and too computationally expensive for the applications of in-
terest here. In the following we assume a uniform mesh, i.e., ∆x=∆y= h, and that the
usual CFL condition for Yee scheme is satisfied

√
2c∞∆t≤h. (5.24)

Numerical demonstrations of stability in 1D for the case of uniform and Beta random
relaxation times and p up to 5 was shown in [48] via a von Neumann approach.

Theorem 5.1 (Energy Decay for Maxwell-PC Debye-FDTD). If the stability condition (5.24)
is satisfied, then the Yee scheme for the 2D TE mode Maxwell-PC Debye system given in (5.22)
satisfies the discrete identity

δtEn+ 1
2

h =
−1

ǫ0ǫdE
n+ 1

2

h

∥∥∥∥ǫ0ǫdE
n+ 1

2 ê1−~α
n+ 1

2

∥∥∥∥
2

A−1

, (5.25)

for all n where

En
h =

(
µ0(H

n+ 1
2 ,Hn− 1

2 )H+‖√ǫ0ǫ∞ En‖2E+
∥∥∥∥

1√
ǫ0ǫd

~ffn
∥∥∥∥
2

α

)1/2

(5.26)

defines a discrete energy.

In the above ‖u‖2
A−1 :=(A−1u,u)α given A−1 positive definite, and ê1 is the first stan-

dard unit normal vector of length p+1.
Note that ‖~α‖2α ≈‖E[P ]‖22+‖StdDev(P)‖22=E[‖P‖22]=‖P‖2F so that this is a natural

extension of the Maxwell-Random Debye energy (3.8).
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Proof. We follow the proof in [14] which proves stability of the Yee scheme for theMaxwell-
Debye system using energy techniques.

We first note that the equations for the polarization in the PC Debye system (5.22d)
and (5.22e) can be re-written as

δt~α
n+ 1

2
x
ℓ+ 1

2 ,j
=ǫ0ǫdE

n+ 1
2

x
ℓ+ 1

2 ,j
A−1ê1−A−1

~α
n+ 1

2
x
ℓ+ 1

2 ,j
, (5.27a)

δt~α
n+ 1

2
y
ℓ,j+ 1

2

=ǫ0ǫdE
n+ 1

2
y
ℓ,j+ 1

2

A−1ê1−A−1
~α
n+ 1

2
y
ℓ,j+ 1

2

(5.27b)

or in vector form as

δt~α
n+ 1

2 =ǫ0ǫdE
n+ 1

2 A−1ê1−A−1
~α

n+ 1
2 . (5.28)

We substitute these into the equations for the electric field (5.22b) and (5.22c) and
re-write as

ǫ0ǫ∞δtE
n+ 1

2
x
ℓ+ 1

2 ,j
=δyH

n+ 1
2

ℓ+ 1
2 ,j
−ǫ0ǫd(ê

T
1 A

−1ê1)E
n+ 1

2
x
ℓ+ 1

2 ,j
+

(
êT1 A

−1
~α
n+ 1

2
x
ℓ+ 1

2 ,j

)
, (5.29a)

ǫ0ǫ∞δtE
n+ 1

2
y
ℓ,j+ 1

2

=−δxH
n+ 1

2

ℓ,j+ 1
2

−ǫ0ǫd(ê
T
1 A

−1ê1)E
n+ 1

2
y
ℓ,j+ 1

2

+

(
êT1 A

−1
~α
n+ 1

2
y
ℓ,j+ 1

2

)
, (5.29b)

or in vector form as

ǫ0ǫ∞δtE
n+ 1

2 = curlhH
n+ 1

2 −ǫ0ǫd(ê
T
1 A

−1ê1)E
n+ 1

2 +êT1 A
−1
~α
n+ 1

2 . (5.30)

Multiplying both sides of (5.30) by ∆x∆yE
n+ 1

2 and summing over all spatial nodes on

τEx

h ×τ
Ey

h we obtain

ǫ0ǫ∞(δtE
n+ 1

2 ,E
n+ 1

2 )E=(curlhH
n+ 1

2 ,E
n+ 1

2 )E

−ǫ0ǫd(ê
T
1 A

−1ê1)(E
n+ 1

2 ,E
n+ 1

2 )E+

(
êT1 A

−1
~α
n+ 1

2 ,E
n+ 1

2

)

E

(5.31)

which can be re-written as

ǫ0ǫ∞

2∆t

[
‖En+1‖2E−‖En‖2E

]
=(curlhH

n+ 1
2 ,E

n+ 1
2 )E

−ǫ0ǫd(ê
T
1 A

−1ê1)‖En+ 1
2 ‖2E+

(
êT1 A

−1
~α
n+ 1

2 ,E
n+ 1

2

)

E

. (5.32)

We consider the average of (5.23a) at n and n+1, multiply with ∆x∆yHn+ 1
2 and sum

over all spatial nodes on τH
h to get

µ0(δtH
n+ 1

2 ,Hn+ 1
2 )H+(curlhE

n+ 1
2 ,Hn+ 1

2 )H=0. (5.33)
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We can rewrite (5.33) as

µ0

2∆t

[
(Hn+ 3

2 ,Hn+ 1
2 )H−(Hn+ 1

2 ,Hn− 1
2 )H
]
+(curlhE

n+ 1
2 ,Hn+ 1

2 )H=0. (5.34)

Finally, we multiply (5.28) by ∆x∆y ~α
n+ 1

2 and sum over all spatial nodes on τEx

h ×τ
Ey

h as
well as all degrees k=0,.. . ,p to get

(
δt~α

n+ 1
2 ,~α

n+ 1
2

)

α

=ǫ0ǫd

(
E
n+ 1

2 A−1ê1,~α
n+ 1

2

)

α

−
(
A−1

~α
n+ 1

2 ,~α
n+ 1

2

)

α

, (5.35)

which can be re-written as

1

2∆tǫ0ǫd

[
‖~αn+1||2α−‖~αn‖2α

]
=

(
E
n+ 1

2 A−1ê1,~α
n+ 1

2

)

α

− 1

ǫ0ǫd

(
A−1

~α
n+ 1

2 ,~α
n+ 1

2

)

α

. (5.36)

Adding (5.32), (5.34), and (5.36), and using the definition (5.26) we have

1

2∆t

{
(En+1

h )2−(En
h )

2
}
=

(
E
n+ 1

2 A−1ê1,~α
n+ 1

2

)

α

− 1

ǫ0ǫd

(
A−1

~α
n+ 1

2 ,~α
n+ 1

2

)

α

−ǫ0ǫd(ê
T
1 A

−1ê1)

∥∥∥∥E
n+ 1

2

∥∥∥∥
2

E

+

(
êT1 A

−1
~α
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=− 1

ǫ0ǫd
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A−1(~α

n+ 1
2 −ǫ0ǫdE
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2 ê1),~α
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We can rewrite this equation in the form

En+1
h −En

h

∆t
=−

(
2

En+1
h +En

h

)
1

ǫ0ǫd

∥∥∥∥ǫ0ǫdE
n+ 1

2 ê1−~α
n+ 1

2

∥∥∥∥
2

A−1

, (5.40)

where ‖u‖2
A−1 :=(A−1u,u)α given A−1 positive definite. Upon utilizing the definitions of

the time differencing and averaging operators in (5.7) and (5.8), respectively, we have the
discrete identity (5.25) for the Maxwell-PC Debye system.

What is left to prove is that the quantity defined in (5.26) is a discrete energy, i.e., a
positive definite function of the solution to the system (5.22). This involves recognizing
that the energy can alternatively be written as

(En
h )

2=µ0‖Hn‖2H+ǫ0ǫ∞(En,AhE
n)E+

1

ǫ0ǫd

(
A−1(~αn−ǫ0ǫdE

nê1),~α
n−ǫ0ǫdE

nê1

)

α

which is positive definite since Ah positive definite when the CFL condition is satisfied
[14], and A−1 is always positive definite (Remark 4.1).
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5.4 Discrete Dispersion Relation

In [53] it was shown that for the Yee scheme applied to the (deterministic) Maxwell-
Debye, the discrete dispersion relation can be written

ω2
∆

c2
ǫ∆(ω)=K2

∆ (5.41)

where the discrete complex permittivity is given by

ǫ∆(ω)=ǫ∞+ǫd

(
1

1−iω∆τ∆

)

with discrete representations of ω and τ given by

ω∆=
sin(ω∆t/2)

∆t/2
, τ∆ =sec(ω∆t/2)τ.

The quantity K∆ relates the spatial discretization scheme to the resulting numerical

wave vector~k∆ =[kx,∆,ky,∆,kz,∆]
T . For example, in 2D

K∆ :=


 ∑

w∈{x,y}
K2
w,∆




1/2

where Kw,∆,w∈{x,y} is related to the symbol of the discrete first order spatial difference oper-
ator by [13]

iKw,∆=F(D1,∆w).

i.e.,

Kw,∆ :=
sin(kw,∆ ∆w/2)

∆w/2
, w∈{x,y}.

It is clear from (5.41) that the left hand side of the discrete dispersion relation depends
on the polarization model, dielectric parameters and the choice of time discretization,
while the right hand side depends on the number of spatial dimensions and the choice of
spatial discretization, e.g., higher order finite difference approximations [13, 15].

Theorem 5.2. The discrete dispersion relation for the Maxwell-PC Debye FDTD scheme in
(5.22) can be written as (5.41) where the discrete expected complex permittivity is given by

ǫ∆(ω) :=ǫ∞+ǫd ê
T
1 (I−iω∆A∆)

−1 ê1,

and the discrete PC matrix is given by

A∆ :=sec(ω∆t/2)A.
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In the above, definitions of the quantities ω∆ and K∆ are the same as before. Note
that the same relation holds in 1 and 3D, as well as with higher order accurate spatial
difference operators.

Recall that the exact expected complex permittivity is given by

ǫ(ω)=ǫ∞+ǫdE

[
1

1−iωτ

]
.

Proof. We assume plane wave solutions of the form

Vn
ℓ,j= Ṽei(ℓ∆xkx,∆+j∆yky,∆−ωn∆t)

for each of V=H,Ex,Ey,αx,0,. . .,αx,p,αy,0,. . .,αy,p. We substitute these representations into
(5.22), cancel like terms and simplify to obtain

H̃sin(ω∆t/2)+
∆t

µ0∆y
Ẽxsin(ky,∆∆y/2)− ∆t

µ0∆x
Ẽysin(kx,∆∆x/2)=0, (5.42a)

(
ǫ0ǫ∞ Ẽx+ α̃x,0

)
sin(ω∆t/2)+

∆t

∆y
H̃sin(ky,∆∆y/2)=0, (5.42b)

(
ǫ0ǫ∞Ẽy+ α̃y,0

)
sin(ω∆t/2)+

∆t

∆x
H̃sin(kx,∆∆x/2)=0, (5.42c)

A~̃αx

(−2i

∆t
sin(ω∆t/2)

)
+cos(ω∆t/2)~̃αx−ǫ0ǫdẼxcos(ω∆t/2)ê1=0, (5.42d)

A~̃αy

(−2i

∆t
sin(ω∆t/2)

)
+cos(ω∆t/2)~̃αy−ǫ0ǫdẼycos(ω∆t/2)ê1=0, (5.42e)

where ~̃αw := [α̃w,0,. . .,α̃w,p]T,w∈{x,y}. Equations (5.42d) and (5.42e) can be re-written in
terms of discrete parameters as

(I−iω∆A∆)~̃αw=ǫ0ǫdẼw ê1, w∈{x,y},

which allows one to solve explicitly for

α̃w,0=ǫ0ǫdẼw ê
T
1 (I−iω∆A∆)

−1 ê1, w∈{x,y}. (5.43)

which we substitute into (5.42b) and (5.42c) to get

ǫ0ǫ∆(ω)Ẽxω∆=−Ky,∆H̃, (5.44)

ǫ0ǫ∆(ω)Ẽyω∆=Kx,∆H̃. (5.45)

Finally, we solve (5.44) for Ẽx, solve (5.45) for Ẽy, and substitute these into (5.42a) to obtain
the desired relation.
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5.5 Dispersion Error

We define the phase error Φ for any method applied to a particular model to be

Φ=

∣∣∣∣
kEX−k∆

kEX

∣∣∣∣, (5.46)

where the numerical wave number k∆ :=‖~k∆‖ is implicitly determined by the correspond-
ing dispersion relation and kEX is the exact wave number for the given model. We wish
to examine the phase error as a function of ω∆t in the range [0,π], however the range
[0,π/4] is more practical since ω∆t= 2π/Nppp, where Nppp is the number of points per
period. In the plots below, we have assumed the following parameters which are appro-
priate constants for modeling aqueous materials:

ǫ∞ =1, ǫs=78.2, τm=8.1×10−12 sec.

We investigate narrow and wide distributions by allowing τr = 0.5τm and τr = 0.9τm. We
allow low, medium and high resolution by choosing hτ :=τm/∆t to be 0.1, 0.01, and 0.0001,
while the spatial mesh is determined by satisfying the CFL condition (5.24). Figure 5.5
shows several plots of phase error at zero angle of incidence (θ=0), for various polyno-
mial chaos degrees M. Note that degree 0 is the deterministic case, therefore these curves
represent the error in not accounting for distributions of relaxation times when they are
present in the material. It is striking that reducing the discretization parameters (e.g., ∆t)
can actually increase the phase error in the highest resolution case, unless the random
Debye model is fully resolved.

In Figure 5.5 we show several log plots of phase error versus angle of incidence (θ)
with fixed ω= 1/τm. For the wide distributions, a higher degree (M) of the polynomial
chaos expansion is needed to achieve convergence. As in Figure 5.5 we see that the high
PC degree approximations attain lower error only for the high resolution examples. Fur-
ther, only the highest degree approximation in each plot exhibits a dependence on θ,
indicating that the errors in the temporal, spatial and PC approximations are additive.
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Figure 1: Plots of phase error at θ=0 for (left column) τr=0.5τm, (right column) τr=0.9τm, (top row) hτ=0.1,
(middle row) hτ =0.01, (bottom row) hτ =0.001.
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Figure 2: Log plots of phase error versus θ with fixed ω = 1/τm for (left column) τr = 0.5τm, (right column)
τr=0.9τm, (top row) hτ =0.1, (middle row) hτ =0.01, (bottom row) hτ =0.001. Legend indicates degree M of
the PC expansion.
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6 Conclusions

In this work we have discussed theoretical and numerical results for Maxwell’s equa-
tions with a Debye polarization term which includes probability distributions for the re-
laxation time. We applied the Polynomial Chaos technique to discretize in random space
the auxiliary ordinary differential equation for polarization. A similar approach can ap-
ply to other polarization models such as Lorentz, or Drude. Combinations of polarization
mechanisms can also be handled in a straight-forward manner, including multi-pole De-
bye or mixtures of materials.

In [48], it was shown that one can improve the traditional Debye model by replacing
the average relaxation time τ̄ with a distribution of relaxation times. The method of
Polynomial Chaos Expansions provides us with a convenient means of representing the
random polarization, P as a linear combination of orthogonal polynomials. By projecting
into finite random space, we are able to replace a random ordinary differential equation
with a system of deterministic ODEs. Combining these with Maxwell’s equations and
noting that the electric field E depends only on the macroscopic polarization E(P)≈ α0,
we obtain the polynomial chaos model (4.1) for an electromagnetic field propagating
through a dispersive dielectric media.

This model lends itself naturally to discretization using the Yee scheme with an ad-
ditional central difference approximation for the Polynomial Chaos system. From the
discretized equations, one is able to obtain a series of sequential (nearly) explicit update
equations, requiring only a tridiagonal (static) matrix solve for the polarization at each
time step.

We have shown that the approachmaintains the conditional stability of the Yee scheme
for Debye materials. We have also derived the discrete dispersion relation which allows
the phase error to be computed. This is helpful in that it can provide a quick heuristic for
how to relate the degree of the Polynomial Chaos Expansion to the temporal and spatial
discretization parameters in order to balance error contributions.
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