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Abstract: Operational objectives and/or constraints of a reservoir system may need to be shifted at certain periods (i.e., transition periods)
due to seasonal considerations of human interest and ecological benefits. Despite the fact that operational schemes in the transition periods are
critical and of great interest to reservoir operation practice, the problem has received little attention in the literature. This paper presents a
study on cluster analysis for identifying patterns of operational schemes during transition periods. The test case corresponds to ten major
reservoirs of the Federal Columbia River Power System (FCRPS) in the United States. The operation horizon consists of two weeks during
which the objectives of the reservoir system are shifted based on seasonal consideration for fish migration and survival. An optimization
model based on an evolutionary algorithm is used to derive the optimal operational schemes under various inflow scenarios. A K-Spectral
Centroid algorithm (K-SC) is applied to the resulting operational schemes to find clusters of the schemes based on similarities of their
temporal shapes. By investigating the relations between the clusters and the inflow scenarios, general patterns of operational schemes
are identified. The analyses offer insights into the operational schemes during the transition period and broaden the understanding
of short-term reservoir operation with shifting operational objectives. DOI: 10.1061/(ASCE)WR.1943-5452.0000772. © 2017 American
Society of Civil Engineers.
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Introduction

Reservoir operation normally provides multiple benefits to human
interests, including flood control, hydropower generation, and
irrigation. Recently, restoration of river ecosystems is being
considered in reservoir operation to address growing concerns of
ecological and environmental protection. Flow requirements for
the biota in the river—i.e., fish communities (Cardwell et al.
1996; Chen et al. 2013), riparian vegetation (Morrison and Stone
2015; Richter and Richter 2000), and macroinvertebrate commun-
ities (Maynard and Lane 2012)—are considered for adapting
reservoir operation. However, some of the requirements regarding
the river ecosystem are seasonal, e.g., fish migration, and they are
normally emphasized only during specific periods. As a result, the
operational considerations (either the objectives or constraints or
both) are shifted at specific times (i.e., transition periods). Reser-
voir operation schemes during a transition period are expected to
achieve an optimal trade-off between the operational objectives
both before and after the transition.

Shifting operational objectives have been frequently discussed
in the context of long-term planning studies (Lund 1996; Wurbs
1991). The shifts occur mostly because the original objectives
and/or constraints are replaced with others that can better serve
the new requirements for the reservoir system. These changes of
the operational considerations are due to regional economic devel-
opment or climate impacts (Jager and Smith 2008; Li et al. 2010;
Loucks 1992; Raje and Mujumdar 2010), which typically happen
during a relatively long time frame such as decades. The shift of
objectives and/or constraints in this long time frame context may
have an influence on the short-term reservoir operation due to the
connection between long-term water control plans and the
prescribed rules for short-term operation. However, the influence
is mostly significant for a long time scale such as years. For a
short-term operation, the shift of operational objectives and/or
constraints within the long-term planning are not considered.

In the context of short-term reservoir operation (i.e., within one
year), many studies considering ecological interests have been
made. However, most of these studies highlight the implementation
of ecological interests in reservoir operations (Chen et al. 2015;
Homa et al. 2005) and focus on achieving an optimal trade-off be-
tween the original human interests, e.g., power generation, and the
added ecological interests, e.g., ecological flow (Olivares 2008;
Suen and Wang 2010). Very few studies have been conducted
on reservoir operation in a transition period during which the
objectives and/or constraints are shifted from one set to another
due to seasonal requirements of the river ecosystem. Eschenbach
et al. (2001) emphasized the need for reservoir managers to adapt
quickly to changing objectives. Smith et al. (2007) argued that
shifting operational objectives and constraints on ecological
interests is a future challenge of reservoir operation for meeting
dynamic and changing requirements. These discussions show
the need for investigating optimal schemes for reservoir operations
during a transition period.

Optimal schemes for reservoir operation are typically obtained by
intensive simulation or, alternatively, by optimization algorithms. In
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addition to traditional optimization approaches such as Newton’s
method, evolutionary algorithms—e.g., genetic algorithms—have
been receiving increasing attention in reservoir operation
(Atiquzzaman et al. 2006; Prasad and Park 2004; Reed et al.
2013; Yandamuri et al. 2006; Yin and Yang 2011) due to their ability
to find global (and not just local) optima. Data-mining techniques are
also applied frequently for identifying operational schemes of reser-
voir operation (Bessler et al. 2003; Wei and Hsu 2008). Among
them, cluster analysis (CA) has been found to have many applica-
tions in reservoir operation due to its advantage for identifying
patterns from massive data (Ponnambalam et al. 2002; Suen 2011).

The main purpose of this study is to use a CA approach to
identify operational scheme patterns for reservoir operation during
a transition period. A case study of ten reservoirs in the Columbia
River, United States is considered. Fifty-one different inflow hydro-
graph scenarios based on historical records from 1965 to 2015 are
used. For each inflow scenario, the optimal operational scheme is
derived using a genetic algorithm and then a clustering method is
used to group and identify patterns of operational schemes.

The remainder of the paper is organized as follows. In the sec-
tion on Optimization Model Setup, the study case—the Big-Ten
reservoir system of the Federal Columbia River Power System
(FCRPS)—is briefly introduced. The objective and the constraints
of the optimization model during a transition period, as well as
modelling of the reservoir system, are described. The inflow
scenarios used for the optimization model are introduced and their
statistics are briefly discussed. The CA Method section introduces
the K-Spectral Centroid algorithm (K-SC), which is an efficient
clustering technique recently developed (Yang and Leskovec
2011). By comparing it with the k-means method, which is widely
used for CA, advantages of applying the K-SC to reservoir
operational schemes are discussed. The index for determining
the number of clusters in the K-SC is also described. In the Results
and Discussions section, the optimal operational schemes and the
identified patterns are presented. The practical benefits of the
identified operational patterns are also discussed. Finally, the main
results are summarized in the “Conclusions” section.

Optimization Model Setup

Study Case

The Big-Ten reservoir system—the ten large reservoirs of the
FCRPS in the United States—is considered as a study case. Grand
Coulee reservoir (GCL), located in the upper Columbia River, is of
the storage type and dominates the system by accounting for nearly
80% of the storage. Other reservoirs are mostly run-of-river
type, characterized by having relatively small storage. The
river–reservoir network and some of the reservoir characteristics
are presented in Fig. 1.

The Big-Ten reservoir system provides multiple benefits,
e.g., power generation, flood control, and fish migration. However,
some of the reservoirs have seasonal requirements and the
operational objectives are only required during specific periods
(Chen et al. 2016; Schwanenberg et al. 2014). From April to
August, the reservoir system is operated to help migration of juve-
nile anadromous fish by maintaining specific operation pool levels
(SOPs) and spilling a certain amount of flow (called fish flow). The
reservoir system no longer has the fish flow nor the SOP require-
ments during September. Therefore the objectives of reservoir
operation are shifted after August 31st (called the shift date).

Objectives

An hourly optimization model was used for finding the optimal
operational schemes during the transition period. The time horizon
for operating the reservoir system as short-term is normally two
weeks (Chen et al. 2016). In order to investigate the overall
performance of the reservoir system during the transition period,
the optimization period in the study was set to two weeks with
one week before and after the shift date. The decision variables
in the model were the total outflows at each reservoir and at each
time interval (i.e., hour). The nondominated sorting genetic algo-
rithm [NSGA-II, (Deb et al. 2002)], one of the most widely used
evolutionary algorithms, was selected as the optimization method.

Fig. 1. Sketch of the ten-reservoir system in the Columbia River
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The population (i.e., candidate solutions) of the NSGA-II was set to
50 and the generation (i.e., iteration times) was set to a relatively
large number (10,000) to ensure convergence.

An important objective of the reservoir system is to meet power
load in the region, as well as to gain maximum revenue from power
generation. Power generated that exceeds the load can be sold in the
power market. On the other hand, energy needs to be purchased if a
load deficit occurs. Net electricity is defined as hydropower
generated minus the load. The revenue is quantified by multiplying
the net electricity by real-time prices from the power market. The
revenue objective is expressed as

max
XT
t¼1

���XNr

i¼1

PGi
t

�
− PLt

�
×PRt

�
ð1Þ

where PG = hydropower generated in the system (MWh); PL =
power (MWh) that is needed for meeting the load (MW) in the re-
gion; PR = market price for hydropower (dollars=MWh); t = time,
e.g., in hours; T = optimization period, i.e., 3,360 h (14 days); the
index i indicates individual reservoirs in the system; and Nr = total
number of reservoirs. The price of hydropower for the two-week
period was predetermined by an economic model (Chen et al. 2014)
and was treated as a deterministic parameter in this study. It should
be noted that the formulation of the objective was mainly for dem-
onstrating the effect of objective shifting on the reservoir operation.
The operating agency—the Bonneville Power Administration—
primarily aims to reduce the total operational cost rather than to
make a profit, as is true of other nonprofit federal agencies. An
alternative objective can be formulated for reducing the operational
cost.

Other constraints of reservoir operation, such as maintaining the
SOP and the fish flow, are described below.

Constraints

In order to assist juvenile salmon and steelhead species in surface
passage past the dams, most of the reservoirs in the system are
required to spill a certain amount of flow through nonturbine struc-
tures such as sluices or gates (Schwanenberg et al. 2014). These
flow requirements are expressed as either a fixed flow rate or a per-
centage of the total outflow of a reservoir (NOAA Fisheries 2014),
as follows:

Qt
s;i ¼ Qsr;i ðfor i ¼ 5; 7; 8; 9Þ ð2Þ

Qt
s;i ¼

qsr;i
100

Qt
out;i ðfor i ¼ 3; 4; 6; 10Þ ð3Þ

where Qs = spill flow; Qsr = fixed fish flow requirement; qs = flow
rate; and Qout = total outflow from reservoir. According to the
Biological Opinion issued by NOAA Fisheries (2014), the Grand
Coulee (i ¼ 1) and Chief Joseph (i ¼ 2) reservoirs are not required
to satisfy any fish flow requirement.

In concert with the purpose of assisting fish migration, the
forebay elevations of reservoirs in the system are required to be
kept within specific ranges, i.e., the SOP. The SOP requirements
are expressed as follows:

SOPlower;i ≤ Ht
r;i ≤ SOPupper;i ð4Þ

where Hr = forebay elevation; and SOPlower and SOPupper = lower
and upper boundaries for the SOP requirement, respectively.

Other operational constraints considered in the model include
lower and upper limits on forebay elevations, turbine flows, and
power outputs and ramping limits on reservoir outflows, forebay

elevations, and tail water elevations. These constraints are consid-
ered to be common practice for reservoir operation and therefore
are not listed for brevity.

The short-term operation of reservoirs is known to be greatly
dependent on initial and ending conditions (Lund 1996) such as
reservoir forebay elevations. Different initial and ending forebay
elevation conditions often lead to various operational schemes that
are too different to compare. To exclude the effects of initial and
ending conditions, a fixed initial forebay elevation and a restriction
on ending forebay elevation are considered. In the study, the
historical forebay elevation of a normal year (1986) at the end of
August 24th (the day before beginning date of optimization) was
used as initial condition. On the other hand, the reservoir forebay
elevations at the end of optimization period are expected to stay
within a target range in order to fulfill their future obligations.
These target ranges are commonly decided by middle-term or
long-term optimization models (Lund 1996), which are not in-
cluded in this study. Instead, the historical forebay elevation of
1986 at the end of September 7th (end date of optimization)
was used as a reference ending condition. In order to avoid equality
constraints, a small deviation was allowed for the forebay elevation
at the end of the period to approximate the reference ending
condition

Htar;i −Δ:Dw;i ≤ Ht
r;i ≤ Htar;i þΔ:Dw;i ð5Þ

where Htar = reference forebay elevation at the end of the period;
Δ = deviation percentage; and Dw = maximum water depth at
reservoir i. The deviation percentage for Grand Coulee reservoir
was set to 0.25% due to its large storage, corresponding to only
0.04 m in water depth. For the other reservoirs the deviation
percentage was set to 10%.

Reservoir System Modelling

The reservoir storages at each time step were modelled through the
following equation (i.e., continuity equation) in order to conserve
the mass:

Vtþ1
i − Vt

i ¼ ½ðQt
in;i þQtþ1

in;i Þ=2 − ðQt
out;i þQtþ1

out;iÞ=2�Δt ð6Þ

where V = reservoir storage; Qin and Qout = inflow to and outflow
from reservoirs, respectively; and Δt = time step. The inflows are
inputs to the model and the outflows are the decision variables.
Water losses due to evaporation were not considered in the model
due to the short time frame under consideration.

The forebay elevations were obtained from the established
forebay-storage curves. The tail waters were obtained using a
regression equation involving the reservoir outflow and the forebay
elevation of the downstream reservoir. The turbine flow was mod-
elled by relating the outflow with the fish flow requirement through
the following procedures:

Qt
tb ¼

8>>>><
>>>>:

Qt
tb min

Qt
out;i −Qsr;i

Qtb max

Qt
out;i

if Qtb min ≤Qt
out;i <Qsr;i þQtb min

if Qsr;i þQtb min ≤Qt
out;i <Qsr;i þQtb max

if Qsr;i þQtb max ≤Qt
out;i

else

ð7Þ
where Qtb = turbine flow; and Qtb min and Qtb max = allowed
minimum and maximum turbine flows, respectively.

The power generation was computed based on the turbine flow
and the water head (a function of forebay elevation and tail water
elevation) with project-aggregated coefficients
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Nt
d;i ¼ KiðHt

r;i − TWt
iÞ ×Qt

tb ð8Þ

where Nd = power output; TW = tail water elevation; and
K = coefficient to express the overall efficiency of turbine, which
was aggregated as one value for each project (reservoir).

The flow propagation within the reservoir–river network was
modelled using the Muskingum-Cunge routing method with
calibrated coefficients. Most of the propagation times in the river
between two reservoirs were 1–3 h except the river reach between
CHJ reservoir and MCN reservoir, which had an average propaga-
tion time of 21 h.

Inflow Scenarios

There are two inflows to the reservoir system—the inflow from
upstream of the GCL reservoir (GCL inflow), and the inflow from
upstream of the LWG reservoir (LWG inflow). Other inflows,
mostly side inflows from small tributaries, provide relatively small
water volumes and hence are omitted in this study. Historical re-
cords of the two inflows with six-hour intervals from 1965 to 2015
(Fig. 2) were used as the multiple inflow scenarios. The period
considered in the study is two weeks ranging from August 25th
to September 7th. Because the optimization model was an hourly
time step, the inflow data were linearly interpolated.

To better characterize the inflow scenarios, two indexes are
proposed in the study. The total inflow volume of the two weeks
period is certainly important for fulfilling objectives/constraints of
reservoir operation. Inflow volumes of Week One and of Week Two
are also important because shifting of reservoir operation involves
temporal water usage competition. The first index is the total
volume ratio (TVR), which is defined as the ratio of total inflow
volume in a given year for the two-week period to that of a bench-
mark year for the same period. The year 1986, the normal water
year, was used as the benchmark year. If the TVR value of one
inflow is larger than one, the total inflow volume for the two-week
period is larger than the benchmark year, implying relative water
abundance, and vice versa. Another index, the weekly volume ratio
(WVR), is defined as the ratio of inflow volume of Week One to
that of Week Two. The index aims to represent temporal distribu-
tion of the inflow between Week One and Week Two.

The histograms of the indexes from the 51 inflow scenarios
are shown in Fig. 3. For the GCL inflow, the observed mean
and standard deviation of the TVR index were 1.00 and 0.18,
respectively. It follows that, on average, the total inflow volume
of the two weeks was equal to that of the benchmark year, although
large variability was observed among the different scenarios. On
the other hand, the observed mean and standard deviations of
the WVR index for GCL inflow were 1.10 and 0.14, respectively.
This suggests that, on average, the inflow volume of Week One was
significantly larger than that of Week Two, showing an important
variability of inflows during the two-week period. For LWG inflow,
the observed means of the TVR and the WVR indexes were 0.99
and 1.0, respectively. These values suggest that the total inflow
volume of the two weeks for the LWG inflow was (on average)
a little less than that of the benchmark year, but the inflow volumes
of the first and second week were (on average) nearly the same.

The study considers multiple inflow scenarios in order to iden-
tify general patterns of reservoir operation during the transition
period. Each optimization for a given inflow scenario is called
an experiment. Each experiment resulted in a set of outflows
and associated forebay elevation trajectories. The trajectory of
the forebay elevation is one of the primary means to represent op-
eration of reservoirs and each of these trajectories is an operational
scheme for reservoir operation. For a given reservoir system, the
forebay elevation trajectory is influenced by the initial and ending
conditions of the forebay elevation, as well as the inflow. Because
the initial and ending forebay elevation of the optimization model
were almost invariant in each experiment (described in the
Constraints section), the study focuses solely on the relationships
between forebay elevation trajectories and reservoir inflows.

CA Method

Cluster Analysis refers to the group of techniques that are designed
to separate a set of objects or observations into different groups or
clusters according to their similarities or proximities. Due to its
generality, the problem has been extensively studied and a number
of solutions and methodologies have been proposed in the
literature, going back to Hartigan’s Rule (e.g., Fuentes and
Casella 2009; Hartigan 1975; Sugar and James 2003; Tibshirani
et al. 2001). Among different techniques, the k-means clustering

Fig. 2. Historical inflows for the period between August 25th and September 7th between 1965 and 2015 at (a) Grand Coulee (GCL); (b) Lower
Granite (LWG)
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algorithm (Dhillon and Modha 2001; Hartigan andWong 1979) has
been a widely used method for CA. More recently, with the
advances in genetics, image processing, and machine learning, new
variations of the problem have become increasingly popular,
including clustering and classification of curves, with obvious
implications in pattern recognition, as discussed in (Zhang et al.
2015). The operational schemes of reservoir operation are
time-series data (i.e., curves) which may have similar patterns even
under different inflow conditions. Identifying patterns of opera-
tional schemes helps to gain a generalized understanding on reser-
voir operation during the transition period.

K -SC Algorithm

The K-SC algorithm (Yang and Leskovec 2011) is a recently de-
veloped method for finding distinct temporal patterns of time-series
data. For a given N set of time series and the number of clusters K,
the goal of theK-SC algorithm is to find an assignment of each time
series and the centroid of each cluster so that a function of a dis-
tance metric is minimized. In a similar way to the K-means cluster-
ing algorithm, the K-SC algorithm iterates a two-step procedure: an
assignment step and a refinement step. The K-SC algorithm starts
with a random initialization of the cluster centers. In the assignment
step, each data time series is assigned to the closest cluster, and in
the refinement step the cluster centroids are updated. By alternating
the two steps, the sum of the distances between the members of the
same cluster is minimized, and the assignment of N sets of time
series into K clusters is completed. The MATLAB code of the
K-SC algorithm can be found at the Stanford Large Network Data-
set Collection (SNAP) provided by Leskovec et al. (2014).

K -SC Algorithm versus K -Means Method

The two clustering methods were compared based on their appli-
cations to reservoir operational schemes. In this study, the opera-
tional schemes are time series, each representing specific actions or
decisions over time. Similar shapes of these operational schemes
suggest similar decisions on reservoir operation that can be grouped
on the same cluster. Therefore it is essential to have a metric that
can appropriately measure the shape similarity of two time series.
For k-means, a simple distance metric, Euclidean, is adopted. The
Euclidean metric measures the overall distance between two curves
and tends to focus on only the global peaks of the curves. Under

this metric, two time series may have a large distance due to a scale
(in volume) or shifting (in position) effect even if their temporal
shapes are similar. By contrast, the K-SC algorithm uses a distance
metric Dðxj; xkÞ that is invariant to scaling and shifting (Yang and
Leskovec 2011), defined as

Dðxj; xkÞ ¼ min
λ;q

kxj − λ:xkðqÞk
kxjk

ð9Þ

where kk = l2 norm; λ = scaling coefficient; and q = shifting
coefficient measured by q time units that are used to shift xk.
The metric works by finding the optimal value of the alignment
q and the scaling coefficient λ for matching the shapes of the
two time series.

To compare the k-means and K-SC methods, six artificial opera-
tional schemes were designed, some of them with similar shapes
(Fig. 4). However, the volumes (i.e., scale) within those with similar
shapes were different. For example, Schemes 1 and 2 had a differ-
ence of 20% in terms of scale. Some shapes were very close in
terms of scale, such as Schemes 5 and 6 with only 3% difference.
For reservoir operation, two operational schemes are defined as
similar if their temporal shapes are similar despite their scales
and shift. The rationale for the definition is discussed in relation
to the clusters that are found by k-means and K-SC which are
shown in Fig. 4.

The six artificial operational schemes should be easily classified
into four clusters by direct observation. The members in each clus-
ter are {①, ②}, {③, ④}, {⑤}, {⑥}. Scheme ① and scheme ② are
different in scale but are very similar in terms of temporal shape.
From the reservoir operator’s perspective, these two share a similar
operational pattern which decreases (either water level or outflow)
along with time, hits a valley point, and then increases after that. In
the same manner scheme ③ and scheme ④ are similar. Scheme ⑤
and scheme ⑥ should be considered different operational patterns
even though they are very close in magnitude. As shown in Fig. 4,
k-means clusters the six operational schemes as {①, ②}, {③}, {④,
⑥}, {⑤}. It turns out that k-means fails to recognize the relation
between schemes 3 and 4, producing incorrect clusters. On the
other hand, the K-SC method is able to find the desirable clusters.

Another advantage of K-SC is the robustness in presence of
outliers. K-means is more sensitive to outliers because it considers
the average of time series for a cluster center. K-SC instead scales

Fig. 3. Histograms of the TVR and the WVR indexes for (a) Grand Coulee (GCL) inflow; (b) Lower Granite (LWG) inflow
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each time series differently to find a cluster center, and therefore the
influence of outliers is largely decreased.

Number of Clusters

Similar to most clustering methods, K-SC also needs to be specify
the number of clusters in advance. The Silhouette (Kaufman
and Rousseeuw 2009), an index to measure how well each object
lies within its cluster, is used for determining the number of clus-
ters. The Silhouette index for the ith point, Si, is defined as
Si ¼ ðxi − yiÞ=maxðxi; yiÞ, where xi is the average distance from
the ith point to the other points in the same cluster, and yi is the
minimum average distance from the ith point to points in a different
cluster, minimized over clusters. The index is within the range of
½−1,1�, and the higher the value, the better the clustering. The case
study measured how the Silhouette index (on average) varied with
the number of clusters for the operational schemes of each reservoir
and determined the number of the clusters with the highest
Silhouette index. Fig. 5 shows the relations between the Silhouette
index and different number of clusters for three reservoirs in the
Big-Ten system as an example. From these relations, the optimal

number of clusters for the GCL reservoir, the LWG reservoir, and
the MCN reservoir can be determined as 2, 2, and 3, respectively.

Results and Discussion

Optimal Operational Schemes and Clusters

Among the ten reservoirs, the GCL and the LWG are the two most
upstream reservoirs and their operation certainly influences the
downstream reservoirs. The MCN, which is located immediately
downstream of the confluence of the Snake River and the upper
Columbia River (Fig. 1), also plays an important role in the system.
Therefore these three reservoirs were selected to demonstrate the
operation of the ten reservoirs. Most of the other reservoirs are
run-of-river reservoirs, which pass inflow from the upstream
reservoir. For simplicity, the operation of these reservoirs is not
discussed herein, although all ten reservoirs were considered in
the modeling. The optimal forebay elevation of the selected reser-
voirs under multiple inflow scenarios was obtained from the opti-
mization model and is shown in Fig. 6.

The groups of the forebay elevation that are clustered by the
K-SC algorithm are also shown in Fig. 6. The centroid of each
group, which demonstrates a mean result of the corresponding
cluster, is illustrated as well.

Two distinctive clusters or groups [Figs. 6(a and d)] were found
in the collection of forebay elevations of the GCL reservoir. For
Group 1, the forebay elevation gradually decreased (with oscilla-
tion) in Week One and increased in Week Two. In contrast, the
forebay scenarios in Group 2 show that the forebay elevation in-
creased (with oscillation) in Week One, achieving a maximum
elevation at the end of Week One or at the beginning of Week
Two. After the maximum forebay elevation was attained, the fore-
bay elevation decreased until the end of Week Two.

The forebay elevations of the LWG reservoir were also clustered
into two groups [Figs. 6(b and e)]. Even though the forebay ele-
vations in Week One were all restrained in a certain range because
of the SOP requirement, the trajectories have clear patterns. For
Group 1, the forebay elevations initially decreased and then in-
creased in Week One. The forebay elevations were maintained
at a high level in Week Two. For Group 2, during the first week
the forebay elevation was initially increased and then decreased
until the end of Week Two, resulting in an opposite operational
strategy to that of Group 1.

Fig. 4. Artificial operational schemes clustered by the k-means and the K-SC methods

Fig. 5. Average Silhouette index for the GCL reservoir, the LWG re-
servoir, and the MCN reservoir
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Three clusters were identified for the forebay elevation of the
MCN reservoir [Figs. 6(c and f)]. For Group 1, the forebay eleva-
tions mainly decreased in Week One and then increased in the first
half of Week Two. After that, the forebay elevations decreased until
the end of Week Two. Groups 2 and 3 were similar in terms of
temporal shape for Week Two, during which the forebay elevations
were mainly decreased (with oscillation). However, these two
groups adopted different operational schemes for Week One.
The forebay elevations of Group 2 rapidly increased and then de-
creased, whereas for Group 3 the forebay elevations maintained a
constant level in the first half-week and then decreased.

Relations between Inflow Scenarios and Clusters

Based on the forebay elevation clusters of each reservoir, the TVR
and WVR indexes of the inflows, specifically the GCL inflow and
the LWG inflow, can be grouped accordingly. Note that each inflow
has these two indexes. For instance, two groups were identified in
the GCL forebay elevation [Figs. 6(a and d)], with 38 solutions in
Groups 1 and 13 solutions in Group 2. Because each forebay
elevation curve (one member in a group) is associated with one
inflow scenario, the TVR indexes of all 38 inflow scenarios that
are associated with Group 1 can be put in one group. The other
13 inflow scenarios that are associated with Group 2 were classified
as another group, shown in Fig. 7(a). Similarly, the WVR index was
classified into two groups as shown in Fig. 7(b). Correspondingly,
the TVR andWVR indexes of the two inflows can also be classified

based on the forebay elevation groups of the LWG reservoir and the
MCN reservoir [shown in Figs. 7(c and d) and Figs. 7(e and f)].

The groups of the TVR index showed no interesting results.
However, clearly separated clusters (or regions) were found for
the WVR index. As can be seen in Fig. 7(b), the WVR index
of the GCL inflow in Group 1 mostly adopted values higher than
1.0 and in Group 2 these values were mostly lower than 1.0.
Interesting results were also found for the WVR index of the
LWG inflow [Fig. 7(d)]. In Group 1 the WVR index of the
LWG inflow adopted values lower than 1.0, and in Group 2 these
values were mostly higher than 1.0. Three groups were found for
the WVR index based on the three groups of the forebay elevations
for the MCN reservoir [Fig. 7(f)]. Members of Group 1 are all in the
upper-right region in which the WVR index of the GCL inflow and
that of the LWG inflow were both higher than 1.0. Most of the
scenarios of Group 2 are located in the lower-left region in which
the WVR index of the GCL inflow was lower than 1.0 and the
WVR index of the LWG inflow was mostly lower than 1.05. Most
of the members in Group 3 are in the lower-right region in which
the WVR index of the GCL inflow was higher than 1.0 and the
WVR index of the LWG inflow was lower than 1.0.

Patterns of Reservoir Operation

By linking the definition of the WVR index with the two groups of
the forebay elevation for the GCL reservoir, it is clear that different
operational schemes need to be adopted when the volume of GCL
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Fig. 6. Forebay elevation trajectories and corresponding clusters of the GCL reservoir, the LWG reservoir, and the MCN reservoir
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inflow in Week One is smaller or greater than that of Week Two.
When the volume of GCL inflow in Week One is smaller than in
Week Two (i.e., WVR lower than 1.0), the operation should adopt
the scheme of Group 1, which should use the storage of this res-
ervoir (forebay elevation is decreased) during Week One to increase
its outflow. This would decrease the power generation (and power
revenue) in this reservoir because flow is released when water level
is relatively low. However, the outflow increases in the GCL
reservoir during Week One for meeting the fish flow requirement.
This operational scheme tries to obtain a balanced solution between
human interests and ecological benefits. In contrast, when the
volume of GCL inflow in Week One is larger than in Week
Two (i.e., WVR greater than one), the system should adopt the
scheme of Group 2, which should store water in Week One (forebay
elevation is increased) when inflow is relatively high during this
week. The high inflow from upstream of GCL ensures that fish flow
requirements for the four reservoirs on the lower Columbia River
(MCN, JDA, TDA, and BON) are satisfied in Week One. Contin-
uing to release water from the GCL reservoir would no longer be
needed for fish flow because the other four reservoirs with fish flow
requirement (LWG, LGS, LMN, and IHA) are on the Snake River.
Therefore the optimal operation of the system under this situation is
to store the excess water (after satisfying fish flow requirements)
during Week One to produce more power during Week Two.

Another pattern was identified for the operation of the LWG
reservoir. The association between forebay elevation groups
with the WVR index shows that the LWG reservoir should adopt

a different operational scheme when the volume of LWG inflow in
Week One is smaller or greater than that of Week Two. When the
volume of LWG inflow in Week One is smaller than in Week Two
(i.e., WVR index lower than one), the LWG reservoir should re-
lease more water in Week One to fulfill the fish flow requirement.
Thus its forebay elevation is decreased, as shown in Figs. 6(b and e)
(Group 1). During Week Two, the forebay elevation maintains a
high level for generating more power with the same outflow, which
helps to compensate the power loss in Week One. On the other
hand, the LWG reservoir would store some water in Week One
when the volume of LWG inflow in Week One is larger than in
Week Two (i.e., WVR index is higher than one), after the fish flow
requirement is met. Higher forebay elevations can be obtained in
this way, as shown in Figs. 6(b and e) (Group 2). This resulting high
forebay elevation and the increased outflow in Week Two help to
produce more power.

The operation of the MCN reservoir is influenced by the oper-
ation of reservoirs on the upper Columbia River (GCL and CHJ)
and the operation of reservoirs on the Snake River (LWG and the
other three reservoirs). Patterns for the MCN reservoir result from
three combinations of the GCL reservoir operation and the LWG
reservoir operation. For instance, the scheme of Group 3 needs to
be adopted for the MCN reservoir when the GCL reservoir
operation adopts its Group 2 scheme (when the WVR index of
GCL inflow is higher than one) and the LWG reservoir operation
adopts its Group 1 scheme (when WVR index of LWG inflow is
lower than one). In this case, because the fish flow requirement for
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Fig. 7. Grouping of TVR and WVR indexes of inflows based on the forebay elevation groups of the GCL reservoir, the LWG reservoir and the MCN
reservoir
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downstream reservoirs can be fulfilled by the operation of upstream
reservoirs, the scheme would only pass the inflow from GCL and
LWG in Week One. A relatively high forebay elevation can also be
maintained in this way. More water would be released in Week Two
for generating more power, thus maximizing revenue. The rationale
of this scheme is to improve the power objective when fish flow
requirements are met.

The identified patterns offer an insight into the various
operational schemes during the transition period. Reservoir oper-
ators can benefit from these patterns because they could choose
an operational scheme depending on a forecasted hydrological re-
gime. Note that the accuracy of the forecast influences the selection
of the patterns. These patterns can also be used as prior information
for online optimization, which will diminish the effort for finding
optimal solutions. The identified patterns provide a good initial
starting point for the optimization model. Therefore the efficiency
of optimization models can be improved with the assistance of the
patterns.

Conclusions

Different patterns of operational schemes were identified for the
ten-reservoir system of the FCRPS during a transition period.
These patterns are found to be highly correlated with the index
of WVR, which represents a ratio between volume of water in
Week One and that of Week Two. In contrast, the patterns showed
nearly no correlation with the index of TVR, which represents a
ratio between total water volume for the two-week period of a spe-
cific year and that of a benchmark year. The comparison indicates
that reservoir operation during objective shifting is more sensitive
to temporal distribution of the inflow (i.e., the WVR index) than to
the total volume of the inflow (i.e., the TVR index). Therefore, the
WVR index is the main driver for adopting different operational
schemes.

The identified patterns help to provide a general understanding
for the operational schemes during the transition period, which can
be used as prior knowledge for better online optimization perfor-
mance. The method of the K-SC was found to outperform the
widely used k-means for clustering reservoir operational schemes
with more informative patterns.
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