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ABSTRACT 

 

A common issue in energy allocation problems is managing the 

trade-off between selling surplus energy to maximize short term 

revenue, versus holding surplus energy to hedge against future 

shortfalls. For energy allocation problems, this surplus represents 

resource flexibility. The decision maker has an option to sell or hold the 

flexibility for future use.  As a decision in the current period can affect 

future decisions significantly, future risk evaluation of uncertainties is 

recommended for the current decision in which a traditional robust 

optimization is not efficient. Therefore, an approach to Flexible-Robust 

Optimization has been formulated by integrating a Real Options Model 

with the Robust Optimization framework. In the energy problem, the 

real options model evaluates the future risk, and provides the value of 

holding flexibility, whereas the robust optimization quantifies 

uncertainty and provide a robust solution of net revenue by selling 

flexibility. This problem is solved using Bi-level programming and a 

complete general mathematical formulation of Bi-Level Flexible-Robust 

Optimization model is presented for multi-reservoir systems and results 

shown to provide an efficient decision making process in energy sectors. 

To reduce the computational expense, mathematical techniques have 

been used in the proposed model to reduce the dimension in the 

quantification and propagation of uncertainties. 

Keywords: Bi-Level Optimization, Flexible-Robust Optimization, Real 

Option Analysis, KL-expansion, Stochastic Collocation.  

 

1. INTRODUCTION 

Renewable energy is a boon to developed countries. There are various 

sources of renewable energy, such as Solar, Hydro, Wind, etc. With the 

help of advanced technologies, we can convert these energies efficiently 

into electricity. Day by day, the population is increasing significantly 

which leads to an increase in the use of electricity. Therefore, research 

has been conducted on how to increase the efficiency of generation of 

electricity from these renewable resources and to allocate it optimally. 

This will increase the revenue of the energy sectors, and also minimize 

power failures. In this paper, we will focus on one particular renewable 

source of energy: Hydro energy. Over many decades, there has been 

continuous development of water resource management for the 

economic benefit of electricity industries. Various studies are being 

conducted in a wide range of domains, such as water allocation, 

infrastructure capacity expansion, water quality, drought control 

mitigation, flood control and conservation of aquatic ecosystems [1]. A 

key consideration for the power sector is identifying optimal strategies 

for buying and selling electricity, thereby using the water optimally to 

maximize revenue and also meet demand. Fundamental ideas of 

engineering have been studied in the water allocation optimization 

problem; literature related to hydro-economic optimization models are 

widely available [1]–[3]. Like all the renewable sources, Hydro energy 

also has many sources of uncertainty, thereby making the energy 

allocation problem very complex. For example, we have low 

uncertainty in the water level and demand in an initial time period, as 

we will have a good idea of the inflows and demands on the current day; 

however, we are not as sure about these quantities on future dates, and 

therefore uncertainty in the system increases. This uncertainty could 

make a significant impact in the decision making of optimal allocation 

of electricity generated from hydro energy. Thus, the Robust 

Optimization approach is necessary in these problems to account for 

uncertainty in the system. Though Robust Optimization quantifies 

uncertainty in the system, it does not have an efficient method to value 

resource flexibility. Resource flexibility is the defined as the surplus 

hydro energy after meeting the demand and is expressed in energy units 

(MWh.). As we will focus only on resource flexibility in this paper, we 

will simply call this flexibility. The value of flexibility refers to the 

economic value created by the ability to move this hydro energy 

generation from one-time period to another (e.g. save water today to use 

tomorrow). The Robust Optimization approach provides a robust 

solution of the optimal generation of electricity; however, in energy 

allocation problems considering all the uncertainties, we need to decide 

whether to allocate the flexibility in the current period or to hold it for 

the future to overcome any negative shocks (due to uncertainties) in the 

energy market. Therefore, the valuation of flexibility is required to 

realize such decisions for selling or holding the flexibility, which 

traditional Robust Optimization is not capable of providing. For general 

allocation problems, economic valuation is done by various economic 

models for any optimal decision making in investment problems, often 

using a Real Options (RO) valuation approach. This valuation helps in 

making choices on whether to invest now or later. We can relate this 

similar scenario to our problem, where during each period we are 

making choices whether to use the flexibility or hold it for future. Thus, 

we present an approach to formulate a Flexible-Robust Objective by 

integrating the real options model within a robust optimization 

framework. However, the energy sectors deal with many complex 
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constraints and guidelines on the large scale multi-reservoir systems. 

These need to be considered in energy allocation problems in multi-

reservoir system, which introduces compatibility issues with RO model 

in the model framework. The operational model has many constraints 

on the operations, but these are difficult to apply to the economical 

valuation model. Therefore, an approach to bi-level Flexible-Robust 

Optimization for optimal energy allocation problems in a complex 

multi-reservoir system is presented to divide the whole framework into 

two levels, focusing upon two different strategies as shown in Fig. 1. 

Similar approaches have been attempted previously in solving other 

domain problem, such as Strategic Offensive and Defensive Military 

structure design  (left of Fig. 1), where the upper level is the offensive 

strategy and lower level is the defensive strategy [4]. In this problem, 

one would choose the best offense, assuming one was facing an 

optimized defense. In the right side of Fig. 1 is our proposed model 

where the upper or top level will be the economic strategy and the lower 

or bottom level will be operational strategy. Though our research 

focuses upon the energy domain, the idea of bi-level flexible-robust 

optimization design is not restricted to only energy allocation problems 

and can be applicable to the optimization problems of different domains.   

To summarize, the list of research topics in this paper is provided below: 

1. Integration of the Real Options model with Robust 

Optimization to resolve the trade-off between getting 

revenue now versus holding water to overcome future risks. 

Other work considers either standalone Robust Optimization 

or only Real Option Analysis. 

2. Implementation of the bi-level programing in the model to 

enforce the complex operational constraints and to enable 

estimation of the outflows for the entire reservoir system to 

meet target flexibility allocations. 

3. Computation efficiency of solving the problem. We have 

implemented the KL-expansion to reduce the dimension of 

the problem, stochastic collocation and sparse grid method 

are then used to improve the computational efficiency when 

the dimension is reduced. 

Section 2 provides the literature review on the Real Option model, 

Robust Optimization and Bi-Level Optimization framework. Section 3 

provides the detail problem description and the mathematical 

formulation of Two Stage Bi-level Flexible Robust optimization model 

for multi-reservoir system. Section 4 discuss the methodologies 

implemented in our model to reduce the dimension of the problem and 

increase the computational efficiency of the model. Section 5 provides 

the result of our case study involving a complex multi-reservoir system. 

Section 6 concludes our paper with final thoughts and future scope of 

research. 

 
2. BACKGROUND 

To implement a method to optimize operations and formulate the bi-

level flexible-robust optimization framework (Fig. 1), real options 

analysis, robust optimization and bi-level optimization framework are 

investigated, and a literature review is provided. 

 

2.1 Real Options in Valuing Flexibility in Large Scale Systems 

The structure of energy markets, which face an increase in 

competition and a goal of improved economic efficiency, face various 

risks and uncertainties. As the level of risk and uncertainty increases, 

traditional deterministic discounted cash flow (DCF) modeling 

approaches used for capacity investment planning need to be 

complemented by other, more sophisticated methods to deal with the 

potential fluctuations in both demand and price, among others. The real 

options (RO) approach to investment decision planning provides an 

attractive opportunity to evaluate investment alternatives in power 

generation in a deregulated market environment [5]. Kumbaroğlu et al. 

[5] presented a policy planning model which can guide policy planning 

in the electricity supply sector, and is based on the real options approach 

to investment. Several other studies have been conducted using the real 

options approach to investment problems in power sectors for the 

valuation of flexible renewable energy where uncertainties are high [6], 

[7]. Marreco and Carpio [8] present a valuation study of operational 

flexibility using Real Option Theory in order to determine the fair 

premium to be paid by the thermal capacity installed and applied in the 

complex Brazilian Power System, considering uncertainties in natural 

affluences.  

In the case of renewable energy facilities (e.g. hydroelectric), the 

system is highly dependent upon hydrological conditions; therefore, 

uncertainties in inflows, weather forecast, market electricity demands 

and prices are significant, and chances of negative shocks are high.  It 

has been a problem for decision makers in these facilities to determine 

how to allocate remaining water after meeting the contracted demands 

while considering uncertainty. This can lead to a wrong decision which 

can decrease revenue significantly and, in a worst scenario, can cause 

environmental damage. For example, if a facility empties storage due to 

high market prices and suddenly there are shortages in the next days, 

they have to forcefully buy electricity from the market to meet the 

demand, which will decrease revenue. Also, if they decide to allocate 

the flexibility later, and if inflows suddenly increase due to unpredicted 

rain, reservoirs may spill and cause flooding. Thus, valuing the flexible 

water is necessary to address potential negative impacts. In other words, 

it is beneficial for these facilities to understand the future value of 

allocated flexibility to help them determine better scheduling plan: 

whether to generate and sell the electricity now with the flexible water 

or to hold the water for future use. Real Option Theory is an appropriate 

technique to determine the value of flexibility.      

In this paper, a Real Option (RO) model is proposed for valuation 

of the flexible water, by adopting real option theory. This real option 

model is integrated with a stochastic optimization framework as part of 

the objective function in the proposed Flexible-Robust Objective. 

Details of flexible robust objective will be explained in Problem 

description. 

 
2.2 Robust Optimization 

In this section, we provide a brief discussion about robust 

optimization and why it is necessary in hydropower generation 

problems. As noted in the previous section, there are multiple sources 

of uncertainty in hydropower generation, and the optimal operational 

decisions should provide consistent results, even when there are 

variations of the uncertain parameters from the expected value. Robust 

optimization is the best approach for these types of problems, where the 

decision can be made based on the risk attitude of the decision maker. 

Much literature is available which presents a stochastic model for 

solving problems in the energy market to deal with uncertainties, and to 

provide an optimal result with minimal risk  [9]–[11]. Robustness has 

also been studied extensively in the engineering literature as a means to 

account for uncertainty. Robustness is defined as the ability of a given 

system configuration to perform well over a wide range of conditions 

over the product lifecycle, such as the occurrence of faults and resulting 

functional losses. Taguchi-based approaches [12]–[15] utilize an 

optimization framework in which the system design is optimized based 

on an objective which considers both the mean and variance of the 

system performance. Variance in the system performance can result 

from multiple sources of random noise, both external and internal to the 

system. Robustness has also been investigated in the biological network 

literature, with principles for achieving robustness defined as system 

control, redundancy, diversity, modularity, and decoupling [16].  
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McIntire et al. applied a Robust Design Optimization framework to the 

Columbia River System to provide an optimal outflow for maximizing 

expected revenue considering the inflow uncertainties. The probabilistic 

framework results in lower risk solution than the deterministic 

approach, when uncertainties are accounted for [17]. However, the 

concept of allocating flexibility and the Real Option analysis was not 

attempted in this framework. Finally, it is obvious to mention that design 

under uncertainties following the RO framework is not only limited to 

hydro energy problems and has been attempted throughout the years in 

solving many complex engineering systems facing various uncertainty 

to build a robust design [18], [19].     

   

2.3 An overview on Bi-Level Optimization  

In real world complex design problems for large scale systems, 

multidisciplinary optimization has been utilized and plays a key role in 

design research. In large-scale complex systems, it is often difficult to 

optimize for the whole system in a single level consisting of large 

numbers of design variables, objective functions and constraints. 

Therefore, it is desirable to break down the system into several 

components or subsystems. It is easier to optimize each of the 

subsystems which guarantee an optimal solution to the main system. 

This idea arises in the multidisciplinary optimization framework 

(MDO), where the optimization of a large-scale system is done by 

optimizing each of the subsystems, which are coupled with each other. 

Analytical Target Cascading (ATC) and Collaborative Optimization 

(CO) are the two methods of MDO. Several studies have been done in 

recent years in MDO [20], [21]. McAllister and Simpson [22] presented 

a CO framework for an Internal Combustion Engine. Another emerging 

approach in the area of Multi-disciplinary optimization is the Bi-Level 

Optimization method. Bi-level optimization is a certain type of 

optimization where one problem is embedded (nested) within another. 

The outer optimization task is commonly referred to as the upper-level 

optimization task, and the inner optimization task is commonly referred 

to as the lower-level optimization task. The lower level optimization 

acts as a constraint in the upper level. These problems involve two kinds 

of variables, referred to as the upper-level variables and the lower-level 

variables [23]. The lower level optimization, also referred to as 

follower’s optimization problem, is solved first. The upper level 

optimization, also referred as leader’s optimization problem, considers 

the optimal solution of the follower. Therefore, the optimal solution of 

the upper level optimization problem will guarantee optimality also in 

the lower level optimization problem. Bi-level optimization was first 

realized in the field of game theory by a German economist Heinrich 

Freiherr von Stackelberg in 1934 that described this hierarchical 

problem. 

A simple formulation of Bi-Level Optimization can be written 

below as: 

min
𝑥
𝐹(𝑥, 𝑦)  (Upper Level) 

s.t (Upper Level Constraints) 

𝐺𝑖(𝑥, 𝑦) ≤ 0 𝑓𝑜𝑟 𝑖 = {1,2…𝑁} 
min
𝑦
𝑓(𝑥, 𝑦) (Lower Level) 

s.t (Lower Level Constraints) 

𝑔𝑗(𝑥, 𝑦)  ≤ 0 𝑓𝑜𝑟 𝑗 = {1,2…𝑛}                                           (1) 

Where x and y are upper and lower level decision variables, 

respectively; 𝐺𝑖 and 𝑔𝑗  are the 𝑖𝑡ℎ and 𝑗 𝑡ℎ inequality constraints in 

upper and lower level, respectively. 

Papers have been published attempting Bi-Level programming in 

various design problems. This approach has been extensively applied in 

the field of transportation and defense strategy. Labbe, Marcotte and 

Savard in 1998 proposed a bilevel model of taxation and its application 

in toll-setting problem in highways. In this bi-level model the leader 

wants to maximize revenue from taxation schemes, while the follower 

rationally reacts to those tax levels [24]. Chen and Subprasom [25] 

formulated a stochastic bi-level programming model for a Build-

Operate-Transfer (BOT) road pricing problem under demand 

uncertainty. Braken and McGill [4] proposed a bi-level optimization 

model in defense applications which includes strategic force planning 

problems and two general purpose force planning problems. In recent 

years, this approach has been accepted and is being widely used in 

strategic bomber force structure, and allocation of tactical aircraft to 

missions. Roghanian, Sadjadi and Aryanezhad [26] presented a bi-level 

multi-objective programming model in enterprise wide supply chain 

planning problem considering uncertainties on market demand, 

production capacity and resource availability. Lv et al. [27] and Xu [28] 

attempted a bi-level optimization technique for a water allocation 

problem; however, the uncertainties were handled in a fuzzy random 

environment in both works. Also, the operational constraints of the 

reservoirs were not considered in the model, which leads to a complex 

design. RO analysis has been used previously in bi-level programming 

in the FACTS investment problem [29]. However, the model was not 

integrated within a robust optimization framework. In this paper, we will 

show the efficiency of the integration of robust optimization and real 

options analysis in a bi-level design framework by providing better 

operational decisions in hydropower scheduling problems 

 

3. PROBLEM DESCRIPTION 

In this section, we will discuss the framework of our model and provide 

the detailed mathematical formulation as an approach to optimize a 

general Hydropower Scheduling problem of large scale systems. In this 

section, mathematical equations of the proposed optimization problem 

will be presented. The solution methods used for the problem will be 

discussed later in Section 4 of the paper. In this paper, we have 

considered two major sources of uncertainty in the inputs of our 

problem: Water inflows and Market price of electricity. The output or 

the decision variables of our model will be deterministic, which will be 

the robust decision considering the uncertainty on the inputs variables. 

Unlike our model, an attempt has been done previously where 

uncertainty is also incorporated into the decision variables [30]. 

However, in our model, the main focus is to provide a robust 

deterministic decision to the operators, causing minimal negative effect 

on the revenue due to the future stated uncertainties. The mathematical 

formulation provided in this section will work for N number of 

reservoirs in the system. However, in this paper, we have provided a 

case study of 3 reservoirs in Lower Columbia River system. In addition 

to being bi-level, the model is also broken down into a two-stage 

optimization problem as shown in Fig. 2. Previously this type of multi-

stage model has been presented [31] in optimization of Real-time 

Hydrothermal system operations where 3 sub-models (hourly, daily and 

monthly) have been coupled with different time-steps (hourly, daily and 

monthly) and optimization period (daily, monthly and yearly) with an 

objective to maximize revenue.  

Figure 2 provides an overview of conceptual framework of the proposed 

model. Stage 1 has the robust optimization which gives the maximum 

possible energy generation during the optimization period. The output 

from the Stage 1 will be an input to the Stage 2 optimization problem 

and will act as a boundary constraint. Given the maximum total energy 

generation during the optimization period, the main purpose of Stage 2 

is to optimally allocate the flexibility after meeting the demand at each 

time period in order to get better revenue by avoiding any failures of 

meeting demand and also making sure of safe operations. The bi-level 

optimization framework has been implemented in the Stage 2 of our 

model. The overall purpose of Stage 2 has been divided into two levels 

in the bi-level programming. The upper level includes the flexible-
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robust objective for maximizing revenue and to address any negative 

shocks. The lower level focuses on making sure the decisions provided 

in the upper level are environmentally safe and physically achievable. 

We will continue the detail description of designing the model step by 

step in the below subsections. As this is a continuation of our previous 

work with simplified model which is restricted only for single reservoir. 

In this mathematical formulation, we have extended the problem for 

multi-reservoir system where M reservoirs can be considered, and 

therefore to help the reader, we keep the nomenclature of the variables 

as much consistent as possible with our previous work. 

 

3.1 Stage 1   

We will provide a brief overview of Stage 1 problem as it is the pre-

requisite of Stage 2 optimization problem. In this paper, we will 

primarily focus on Stage 2 since bi-level flexible robust optimization 

framework is introduced in Stage 2. Stage 1 problem involves the 

maximization of energy generation capacity considering physical and 

operational constraints of reservoirs. The maximum total energy 

generation is the final output of Stage 1 and will be passed as input to 

Stage 2. Enforcing the mentioned constraints will make sure that the 

solution of Stage 1 will not be infeasible or unachievable. Being 

infeasible will lead to an infeasible solution from Stage 2 as well since 

Stage 2 will try to allocate that infeasible total energy.  The decision 

variable for Stage 1 model is total water outflow as each time-step.  

Below is the mathematical formulation of the Stage 1 optimization 

problem: 

Note:  

In the mathematical formulation, 

• Variables with the overscript ~ are uncertain variables.  

• Variables without the overscript ~ are deterministic variables. 

• Variables having superscript * are optimal solutions. 

• 1 kcfs= 28.316847 m3/s (S.I unit) 

• 1 ft= 0.3048 m (S.I unit) 

 

Model Input:  

(Water) Inflows, 𝑸̃𝒊𝒏 

 

Model Decision Variables:   

The total outflows in kcfs at each time step and each reservoir 

are defined as decision variables in the optimization and is denoted by 

matrix, 𝑸 𝒐𝒖𝒕,𝑺𝒕𝒂𝒈𝒆𝟏. Each row represents daily timesteps of 14 days (t 

=14) and each column represents number of reservoirs (N = 3 in this 

case study). 

[𝑄𝑜𝑢𝑡,1,1, 𝑄𝑜𝑢𝑡,1,2, …… . . , 𝑄𝑜𝑢𝑡,1,𝑡 

⋮ 
𝑄𝑜𝑢𝑡,𝑁,1, 𝑄𝑜𝑢𝑡,𝑁,2, …… . . , 𝑄𝑜𝑢𝑡,𝑁,𝑡] 

 

Model Objective:   

Maximize Energy generation capacity,  

max
𝑄𝑜𝑢𝑡,𝑖,𝑡

∑ ∑ ẽi,t(𝑄𝑜𝑢𝑡,𝑖,𝑡, ℎ𝑑̃𝑖,𝑡(𝐹𝐵̃𝑖,𝑡,  TWi,t), ξ𝑡)
𝑁
𝑖=1

14
𝑡=1                                         (2)

                                       

Where, 

ẽi,t =  𝜂 × 9.81 × ℎ𝑑̃𝑖,𝑡 × 𝑄𝑜𝑢𝑡,𝑖,𝑡 × 8.6310 × 10
−3 × ξ𝑡                  (3)         

In this equation, ẽi,t is the energy generation of reservoir i at each time 

step t in MWh, where 𝜂 is the efficiency of the reservoir, taken as 

0.75; ξ𝑡 is assumed as 1 hour; ℎ𝑑̃𝑖,𝑡 is the head in ft and is calculated as 

below:  

ℎ𝑑̃𝑖,𝑡=𝐹𝐵̃𝑖,𝑡(𝑆̃𝑖,𝑡  (𝑄̃𝑖𝑛,𝑖,𝑡, 𝑄̃𝑖𝑛,𝑖,𝑡−1, 𝑄𝑜𝑢𝑡,𝑖,𝑡, 𝑄𝑜𝑢𝑡,𝑖,𝑡−1, deltt) ) − TWi,t  

(4)                           

 TWi,t = 𝐴𝑖 + 𝐵𝑖 × 𝑄𝑜𝑢𝑡,𝑖,𝑡 + 𝐶𝑖 × 𝐹𝐵̃𝑖+1,𝑡−1                                         (5) 

TWi,t = 𝐴𝑖 + 𝐵𝑖 × TWi,t−1 + 𝐶𝑖 × (𝑄𝑜𝑢𝑡,𝑖,𝑡 − 𝑄𝑜𝑢𝑡,𝑖,𝑡−1)                      (6) 

𝐹𝐵̃𝑖,𝑡 is the reservoir water level of reservoir i at time t; 𝐹𝐵̃𝑖+1,𝑡−1 is the 

water level elevation at the next downstream reservoir at the previous 

timestep (we assume i+1 is the next downstream reservoir of reservoir 

i and i-1 is the previous upstream reservoir of reservoir i); 𝑆̃𝑖,𝑡 is 

reservoir storage of reservoir i; TWi,t is the tailwater of reservoir i and 

is evaluated from Eq. (5) and (6). The tailwater elevation-discharge 

relationship has been found to be well approximated using simple linear 

regression relationships. Equation 6 is used to calculate the tailwater for 

the most downstream reservoirs in the system whereas Eq. (5) is used to 

calculate the tailwater for all the other reservoirs in the system. 𝐴𝑖, 𝐵𝑖 
and 𝐶𝑖are the coefficients for reservoir i. Table 1 shows the value of the 

coefficients obtained from the existing model of Bonneville Power 

Administrator (BPA), used in our case study of the 3-reservoir system. 

 

Subject to: 

Model Constraints (Operational Constraints):  

a. Water Balance Constraints  

0 ≤
 𝑆̃𝑖,𝑡 (𝑄̃𝑖𝑛,𝑖,𝑡 , 𝑄̃𝑖𝑛,𝑖,𝑡−1, 𝑄𝑜𝑢𝑡,𝑖,𝑡, 𝑄𝑜𝑢𝑡,𝑖,𝑡−1, deltt) ≤  𝑆𝑖,𝑚𝑎𝑥                   (7) 

where,  

𝑆̃𝑖,𝑡+1   = ((𝑄̃𝑖𝑛,𝑖,𝑡 + 𝑄̃𝑖𝑛,𝑖,𝑡+1)/2 − (𝑄𝑜𝑢𝑡,𝑖,𝑡 + 𝑄𝑜𝑢𝑡,𝑖,𝑡+1)/

2). delt𝑡  + 𝑆̃𝑖,𝑡                                                                                     (8) 

In these Equations, 𝑆̃𝑖,𝑡 is reservoir storage in kcfs-day for reservoir 

i. 𝑆𝑖,𝑚𝑎𝑥 is the maximum storage capacity of reservoir 

i, 𝑄̃𝑖𝑛,𝑖 and 𝑄𝑜𝑢𝑡,𝑖  are inflow and outflow to reservoir in, respectively of 

reservoir i, and deltt is time (day) between each time step. At this stage, 

the water leakage and natural water loss is not considered. We consider 

Equation (7) as a Reliability Constraint. Therefore, Equation (7) 

becomes:  

𝑃𝑟{0 ≤
 𝑆̃𝑖,𝑡 (𝑄̃𝑖𝑛,𝑖,𝑡 , 𝑄̃𝑖𝑛,𝑖,𝑡−1, 𝑄𝑜𝑢𝑡,𝑖,𝑡, 𝑄𝑜𝑢𝑡,𝑖,𝑡−1, deltt) ≤  𝑆𝑖,𝑚𝑎𝑥   } ≥  𝑅,   0 ≤

𝑅 ≤ 1                                                                                                   (9) 

where R is the reliability factor.     

 

b. Reservoir Water Surface Elevation (WSE) Constraints  

𝐹𝐵𝑖,𝑚𝑖𝑛 ≤  𝐹𝐵̃𝑖,𝑡(𝑆̃𝑖,𝑡)  ≤  𝐹𝐵𝑖,𝑚𝑎𝑥                                          (10)                                                                          

where, 

 𝐹𝐵̃𝑖,𝑡 =  𝐴𝑖 × ( 𝑆̃𝑖,𝑡)
2  +  𝐵𝑖 × ( 𝑆̃𝑖,𝑡  )  + 𝐶𝑖                                (11)                                                                     

where  𝐹𝐵̃𝑖,𝑡 is the reservoir water level in ft at time t of reservoir 

i, 𝐹𝐵𝑖,𝑚𝑖𝑛 and 𝐹𝐵𝑖,𝑚𝑎𝑥 are the allowable minimum and maximum 

reservoir water elevation respectively. 𝐴𝑖, 𝐵𝑖 and 𝐶𝑖are the coefficients 

for reservoir i and are determined by fitting actual forebay elevation 

observations with a polynomial regression model. Table 2 shows the 

value of the coefficients obtained from the existing model of Bonneville 

Power Administrator (BPA), used in our case study of 3-reservoir 

system. We consider Equation (10) as a Reliability Constraint. 

Therefore, Equation (10) becomes:  

𝑃𝑟{𝐹𝐵𝑖,𝑚𝑖𝑛 ≤  𝐹𝐵̃𝑖,𝑡(𝑆̃𝑖,𝑡)  ≤  𝐹𝐵𝑖,𝑚𝑎𝑥} ≥  𝑅, 0 ≤ 𝑅 ≤ 1        (12)                                                         

where R is the reliability factor.    

 

c. Turbine Flow Constraints  

𝑄𝑖,𝑡𝑏−𝑚𝑖𝑛  ≤  𝑄𝑡𝑏,𝑖,𝑡  ≤  𝑄𝑖,𝑡𝑏−𝑚𝑎𝑥                                                                 (13) 

In this constraint,  𝑄𝑡𝑏,𝑖,𝑡 is turbine flow for power generation in kcfs at 

each time step of reservoir i and 𝑄𝑖,𝑡𝑏−𝑚𝑖𝑛 and 𝑄𝑖,𝑡𝑏−𝑚𝑎𝑥 are allowed 

minimum and maximum discharge respectively. Since we are ignoring 

spill flow, Turbine flow and Outflow will be same.  Therefore, we can 

re-write Equation (13) as below: 

𝑄𝑡𝑏−𝑚𝑖𝑛  ≤  𝑄𝑜𝑢𝑡,𝑖,𝑡  ≤  𝑄𝑡𝑏−𝑚𝑎𝑥                                                        (14) 
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d. Output Constraints  

𝑁𝑖,𝑑−𝑚𝑖𝑛  ≤  𝑁̃𝑑,𝑖,𝑡(𝑄𝑜𝑢𝑡,𝑖,𝑡, ℎ𝑑̃𝑖,𝑡)  ≤  𝑁𝑖,𝑑−𝑚𝑎𝑥                         (15)                                      

where, 

𝑁̃𝑑,𝑖,𝑡 =  𝜂 × 9.81 × ℎ𝑑̃𝑖,𝑡(𝐹𝐵̃𝑖,𝑡,  TWi,t) × 𝑄𝑜𝑢𝑡,𝑖,𝑡 × 8.6310 × 10
−3    

(16)                                                             

In the output constraint, 𝑁̃𝑑,𝑖,𝑡 is power output in MW at time t of 

reservoir i, and 𝑁𝑖,𝑑−𝑚𝑖𝑛 and 𝑁𝑖,𝑑−𝑚𝑎𝑥 are the minimum and maximum 

output capacity, respectively. We consider Equation (15) as 

a Reliability Constraint. Therefore, Equation (15) becomes:  

𝑃𝑟{𝑁𝑖,𝑑−𝑚𝑖𝑛  ≤  𝑁̃𝑑,𝑖,𝑡(𝑄𝑜𝑢𝑡,𝑖,𝑡 , ℎ𝑑̃𝑖,𝑡)  ≤  𝑁𝑖,𝑑−𝑚𝑎𝑥  } ≥  𝑅,   0 ≤

𝑅 ≤ 1                                                                                                  (17) 

where R is the reliability factor.    

 

e. Reservoir Water Surface Elevation (WSE) Constraints on the 

end-of-period  

The optimization is conducted over a 14-day time span, which is a 

relatively short-term for reservoir operations. To be consistent with 

middle-term or long-term operation, the water surface elevation (WSE) 

in the reservoir at the end of optimization period is expected to stay 

within a target WSE to fulfil future requirements. In the example 

problem we have formulated, the historical data from the actual 

operation scheme is used as the target WSE for the optimization 

model. To avoid equality constraints, a small range on the target WSE 

is used to restrain the WSE on the end-of-period to be close to the target 

WSE: 

𝐹𝐵𝑖,𝑡𝑎𝑟,𝑒𝑛𝑑  −  Δ ≤  𝐹𝐵̃𝑖,𝑡  ≤  𝐹𝐵𝑖,𝑡𝑎𝑟,𝑒𝑛𝑑  +  Δ                         (18)                                                            

where 𝐹𝐵𝑖,𝑡𝑎𝑟,𝑒𝑛𝑑 is the target WSE on the end-of-period of reservoir i, 

and Δ is the deviation from the target WSE. The Δ is set as 1% in the 

model and 𝐹𝐵𝑡𝑎𝑟,𝑒𝑛𝑑  is taken as 1280 ft. We consider Equation (18) as 

a Reliability Constraint. Therefore, Equation (18) becomes:  

𝑃𝑟{𝐹𝐵𝑖,𝑡𝑎𝑟,𝑒𝑛𝑑  −  Δ ≤  𝐹𝐵̃𝑖,𝑡  ≤  𝐹𝐵𝑖,𝑡𝑎𝑟,𝑒𝑛𝑑  +  Δ } ≥  𝑅,   0 ≤ 𝑅 ≤ 1  

                                                                                                           (19)                                                    

where R is the reliability factor.    

 

Model Output: 

• Maximum energy generation capacity 𝐸̃𝑚𝑎𝑥,1  

 

3.2 Stage 2 (Bi-level Optimization) 

Once the output from Stage 1 is obtained, Stage 2 optimization starts. 

The Bi-level optimization framework has been implemented in Stage 2. 

Therefore, the stage 2 problem is divided into two sublevel problems: 

Upper Level and Lower Level Optimization problems. 

Upper Level: The upper level optimization sets a target 

allocation of energy in each iteration which is to be passed to the lower 

level problem to determine the feasibility of the target decision. Details 

of the lower level optimization problem will be discussed later in this 

section. The upper level only focuses on the economic strategy and 

therefore the Real Option (RO) model is integrated with the robust 

optimization framework. Real Option analysis is an economic tool 

which helps to value the multiple courses of actions in a decision: that 

is to either sell the flexibility or hold it for future use based upon the 

future value of flexibility. Since there is a lot of uncertainty from river 

inflows in future days, it is desirable for energy sectors to have some 

knowledge if the current allocation of flexibility may cause any shortage 

of energy in future. This will allow them to address any negative shocks 

and thereby not to lose revenue. A Real Option model provides this 

information considering the Inflow uncertainty and is thus integrated 

with the robust optimization framework for better quantification of 

uncertainty and making efficient operations. In our case study, we took 

two sources of uncertainty: Prices and Inflows. Since the RO model 

quantifies the inflow uncertainty to provide a valuation for flexibility, it 

will be redundant to quantify the same uncertainty source again in the 

robust objective formulation: lower uncertainty is preferred to higher 

uncertainty in both the RO model and the robust objective and therefore 

moves the solution in the same direction. However, Price uncertainty 

seems to have much less variation than inflows; therefore, Real Option 

analysis on Price uncertainty is redundant as this will increase the 

computational cost of the model significantly without much 

improvement in the solution. Thus, we will formulate the integrated 

Flexible-Robust objective such that Price and Inflows uncertainty will 

be handled separately by the robust objective and the real option model, 

respectively. As the RO model is key to incorporating flexibility in the 

overall framework, it will be described in the next subsection. 

 

The Real Option Model to compute Option value, 𝑉̃𝑡(ℎ, 𝐹̃𝑡) 

Given the possible future economic values of flexibility (one value for 

each future time point), we need to figure out the current value of 

flexibility so that it is directly comparable to the current sales revenue. 

This is accomplished using option theory. To facilitate illustration, we 

start with a simplified, discretized model. 

As shown in Fig. 3, the realization of past uncertainties leads us to 

the current state, denoted by the red dot in the figure. We can sell ℎ 

amount of flexibility now and get current revenue or we can hold it to 

the future. Depending on the realization of future uncertainties, we may 

evolve to different states in period 𝑡 + 1 along different future paths as 

denoted by the broken lines. First, consider the case in which the 

distribution of future flexibility is given. The different realizations of 

uncertainties generate different future scenarios with different 

flexibilities. In Fig. 3, the probability distribution is given and is denoted 

by the blue line in the figure. The probability distribution also stipulates 

the probability of energy shortage (𝐹̃𝑡+𝜏 < 0) as denoted by the shaded 

area. If provided with the information about the market supply function, 

we can derive 𝑊̃𝑡+𝜏(ℎ, 𝐹̃𝑡+𝜏), the future value of flexibility for period 

𝑡 + 𝜏, which will later be explained in detail.  

Next, we consider the uncertainty in the distribution of future flexibility. 

This allows us to investigate the uncertainty from specific sources, such 

as inflows, that may shift the distribution of future flexibility and 

consequently affect the opportunity cost of selling ℎ in the current 

period 𝑡. This can be accomplished using the multi-period multinomial 

option price model [32], [33] in general. The example shown in Fig. 4 

generates a classical multi-period binomial option model [34]. Fig. 4 has 

a binomial decision tree structure for a three-period option. Given the 

flexibility in the current period t, there are two possible scenarios 

associated with different levels of flexibility in period t+1: shortage and 

no shortage. Due to the uncertainties in the system, the incidence of 

shortage is governed by the probabilistic event 𝐹̃𝑡+1 < 0, where 𝐹̃𝑡+1  is 

the total flexibility of the system at t+1 period after the allocation at t 

period, which occurs with the probability given by the blue-shaded area 

in the Fig. 4. 

In the current period 𝑡, we can either sell the h amount of flexibility for 

sales revenue or hold on the flexibility as an option to use it in future 

periods. Depending on the realization of uncertainties, the option value 

of holding ℎ amount of flexibility to period 𝑡 + 1 may equal either 

𝑊̃𝑡+1,1(ℎ, 𝐹̃𝑡+1) or 𝑊̃𝑡+1,2(ℎ, 𝐹̃𝑡+1). Then conditional on the amount of 

flexibility in period 𝑡 + 1, we may have two additional possible 

scenarios corresponding to the incidence of shortage in period 𝑡 + 2. 

Depending on the uncertainties in period 𝑡 + 2, the value of holding h 

amount of flexibility to period 𝑡 + 2 may have different values denoted 

as 𝑊̃𝑡+2,1(ℎ, 𝐹̃𝑡+2), 𝑊̃𝑡+2,2(ℎ, 𝐹̃𝑡+2), 𝑊̃𝑡+2,3(ℎ, 𝐹̃𝑡+2), and 

𝑊̃𝑡+2,4(ℎ, 𝐹̃𝑡+2). This structure can be extended to multiple periods. The 

cost of doing so is an increase in computing time. 
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The determination of the option value for each period 

𝑉̃𝑡+𝜏(ℎ, 𝐹̃𝑡+𝜏)  (𝜏 = 1, 2,… , 𝑇) uses a backward induction scheme. 

Starting from the last period T (T=t+2 in case 3-day optimization period 

decision tree structure as shown in Fig. 4), if the flexibility h is held to 

the last period, its value equals the purchase cost saved if shortage 

occurs: 

𝑊̃𝑇(ℎ, 𝐹̃𝑇) = −min(0,max(−ℎ𝑡, 𝐹̃𝑇)) × ∆𝑃=

{
−max(−ℎ𝑡, 𝐹̃𝑇) × ∆𝑃 , 𝑖𝑓 𝐹̃𝑇 < 0

0 𝑖𝑓 𝐹̃𝑇 ≥ 0
                                                 (20)            

Note that a shortage occurs when 𝐹̃𝑇 < 0, and that ∆𝑃= 2 where 

∆𝑃 is the multiplicative difference between the purchase and sell price 

of electricity. In a large hydro-energy sector like Bonneville Power 

Administration, when they have shortages, that is an indication of 

insufficient hydro-power and a need for power generation from other 

sources such as fossil, steam or gas turbines whose cost is 3 times the 

cost of hydro-electricity [35]. Therefore, we have assumed that the 

purchase price is 3 times the sell price of hydro-electricity (and ∆𝑃 =
 3 − 1 =  2). It is important to emphasize that the incidence of 𝐹̃𝑇 < 0 

follows a random distribution conditional on the realized values of past 

flexibility like 𝐹̃𝑇−1. 

Similarly, we can calculate the value of using h to avoid additional 

purchase cost if a shortage occurs in period T-1, denote the value as: 

𝑊̃𝑇−1(ℎ, 𝐹̃𝑇−1): 

𝑊̃𝑇−1(ℎ, 𝐹̃𝑇−1) = −min(0,max(−ℎ𝑡, 𝐹̃𝑇−1)) × ∆𝑃 =

{
−max(−ℎ𝑡, 𝐹̃𝑇−1) × ∆𝑃, 𝑖𝑓 𝐹̃𝑇−1 < 0

µ𝑇−1𝑉̃𝑇(ℎ, 𝐹̃𝑇)/𝑟 𝑖𝑓 𝐹̃𝑇−1 ≥ 0
                                            (21)                                                    

where 𝑟 is the interest rate. Given that the time step in our example is 

daily, 𝑟 ≈ 1. However, when 𝐹̃𝑇−1 ≥ 0, instead of have zero value, 

holding onto the flexibility generates an expected future payoff of 

𝛿µ𝑇−1𝑊̃𝑇(ℎ, 𝐹̃𝑇|𝐹̃𝑇−1 > 0). This is done for each of the possible 

scenarios in period T-1. Then, taking the period T-1 as the final period, 

we use this procedure iteratively until we are at the first time period.  

As flexibility can only be used once, the option value of ℎ in time 

period 𝑡 is denoted as 𝑉𝑡̃(ℎ, 𝐹𝑡), which can be calculated as:  

𝑉̃𝑡(ℎ, 𝐹̃𝑡) = max
𝜏
 𝑟−𝑘µ𝑡𝑊̃𝑡+𝜏(ℎ, 𝐹̃𝑡+𝜏)   for τ = 1,… , 𝑇 − 𝑡,           (22)                                                 

where µ𝑡(. ) is the expectation operator based on information about 𝐹̃𝑡. 

The mean value of 𝑉̃𝑡(ℎ, 𝐹̃𝑡) is reported to the robust optimization 

framework to evaluate the flexible-robust objective as in Eq (24).  

 

Computing Expected Net Revenue at the end period of 

optimization, 𝒓𝟏𝟒 

In our problem, although the optimization period is 14 days, the decision 

tree includes a 13-day period. That is T=t+12. This is because on the 

14th day (last day of optimization), we will allocate any remaining 

flexibility such that the water level or the forebay elevation of the 

reservoirs will be within the desired level as per the operation 

constraints. Thus, it is not valid to calculate the future value of flexibility 

at the end optimization period as there are no future days. Instead, based 

on the remaining flexibility on the end period after allocating flexibility 

on previous 13 days, we will calculate the expected shortages and the 

probability of the shortages. Then the Expected Net Revenue at the end 

period of optimization, 𝑟14 can be calculated as below: 

𝑟14 = 

{
 
 

 
 

(𝑝𝑏𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒,14 ∗ 24 ∗ p̃14 ∗ (ℎ14 −  µ(Sh̃14))) +

((1 − 𝑝𝑏𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒,14) ∗ 24 ∗ p̃14 ∗ ℎ14)  𝑖𝑓 𝐹̃14 ≥  µ(Sh̃14)

(𝑝𝑏𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒,14 ∗ 24 ∗ (1 + ∆𝑃) ∗ p̃14 ∗ (ℎ14 −  µ(Sh̃14))) +

((1 − 𝑝𝑏𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒,14) ∗ 24 ∗ p̃14 ∗ ℎ14)    𝑖𝑓 𝐹̃14 ≤  µ(Sh̃14)

 

(23) 

Where 𝑝𝑏𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒,14 is the probability of shortage at day 14, p̃14 is the 

price at day 14, ℎ𝑡 is the total allocated flexibility at day 14 in MWh for 

N reservoirs, µ(Sh̃14) is the expected shortage at day 14, 𝐹̃14 is the 

remaining flexibility at day 14 before allocation, ∆𝑃= 2 where ∆𝑃 is the 

multiplicative difference between the purchase and sell price of 

electricity in the case when the expected shortage is greater than the 

available flexibility to allocate at day 14. As we say, at the end period 

we allocate all the remaining flexibility, therefore ℎ14 =  µ( 𝐹̃14). With 

the RO model formulated, we can now write out the upper level 

optimization problem. 

 

3.2.1 Upper Level Optimization Problem:  

Below is the mathematical formulation of the Stage 2 Upper level 

optimization problem: 

Model Input:  

• Demand, D = [𝑑1, 𝑑2, … , 𝑑14]  
• Maximum energy generation each day for each reservoir  

𝑬̃𝒎𝒂𝒙,𝟏 obtained from the output of previously mentioned 

Stage 1 problem.  

• Price, 𝑷̃ 

 

Model Decision Variables:   

We propose the decision variable to be the allocated energy for each 

reservoir at each time-steps.  

[𝑒1,1, 𝑒1,2, …… . . , 𝑒1,𝑡 

⋮ 
   𝑒𝑁,1, 𝑒𝑁,2, . . . . . . . . , 𝑒𝑁,𝑡]                                                 

Each row represents daily timesteps of 14 days (t=14) and each 

column represents number of reservoirs (N=3 in this case study) 

 

The Flexible-Robust Objective:  

max
𝑒𝑖,𝑡

[ ∑ 24 ∗ p̃𝑡 ∗ ((h𝑡 −  µ(𝑉̃𝑡(ℎ, 𝐹̃𝑡)) ) − (Pen ∗ ∑ dev𝑖,𝑡
𝑁
𝑖=1 ))]13

𝑡=1 +

 [𝑟14 − (Pen ∗ ∑ dev𝑖,14
𝑁
𝑖=1 )]                                                             (24) 

where                                                      

 h𝑡 = ∑ 𝑒𝑖,𝑡
𝑁
𝑖=1 − 𝑑𝑡                                                                           (25) 

dev𝑖,𝑡 = | (𝑒𝑖,𝑡  –  µ( e`̃i,t)|; 𝑖 = 1, . . , 𝑁; 𝑡 = 1, . . ,14                               (26) 

∑ h𝑖,𝑡
𝑁
𝑖=1  or h𝑡 is the total allocated flexibility in period t in MWh for N 

reservoirs; p̃𝑡 is the price/MWh to sell electricity in each day over 14 

days period; 𝑒𝑖,𝑡 is the decision of allocation of energy in MWh on Day 

t for reservoir i; µ(𝑉̃𝑡(ℎ, 𝐹̃𝑡)) is the expectation of the Option Value of 

total allocated flexibility h𝑡 of N reservoirs at time t which depends on 

amount of cumulative flexibility left in the system at time t, 𝐹𝑡̃; 𝑟14 is 

the Expected Net Revenue at the end period of optimization. We have 

already discussed the computation of the Real Option Model to evaluate 

µ(𝑉̃𝑡(ℎ, 𝐹̃𝑡))  and 𝑟14.  For the Multi-Reservoir we only know the total 

Demand dt each day. From which reservoir the demand energy should 

be generated is an additional optimization problem that is not considered 

in this example (it can be considered a Stage 3 or integrated in Stage 2). 

Therefore, information of the amount of energy generated from 

individual reservoirs to meet the demands 𝑑𝑖,𝑡 is unknown in this 

problem. Thus, in multi-reservoir system, ∑ [𝑑𝑖,𝑡]
𝑁
𝑖=1 ; 𝑡 = 1,2,… 14 or 

𝑑𝑡 is known but [𝑑𝑖,1, 𝑑𝑖,2, … , 𝑑𝑖,14] for reservoir i is unknown and we 

only know total flexibility in each time step. dev𝑖,𝑡 is the deviation 

between the target allocated energy (Upper Level) and the mean of the 

achievable allocated energy obtained in Lower Level Optimization 

problem. We will define it later in this section in the computation of 

µ( e`̃i,t) in the Lower Level optimization problem. Pen is the Penalty 

factor and is considered as 0.5, 1, 1.5. We first attempted our 
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formulation of the flexible-robust objective (Equation 24) without 

taking Penalty term. Instead, our approaches were to consider a certain 

target allocation of energy 𝑒𝑖,𝑡 a feasible decision only if  dev𝑖,𝑡  ≤  𝛿. 𝛿 

is very small value (1 MWh) which was defined as the maximum 

deviation of the achievable solution (Lower level) from the target 

solution (Upper level) such that we can ignore the effect on the net 

revenue. With the complexity of the problem considering a multi-

reservoir system, we fail to find feasible optimal solutions using the 

allowable deviation approach, i.e. (dev𝑖,𝑡  ≥  𝛿 ). To get sufficient 

feasible decision points, we need to put a larger 𝛿 which then will not 

guarantee optimality in terms of revenue (Upper level objective) since 

the achievable solution may be too far away from the target. To mitigate 

this issue, we used an approach introducing a Penalty term as shown in 

Equation 24.  In this way, any deviation of the achievable solution from 

the target solution will be penalized and thus we will not discard target 

decision points set in the Upper level which are unachievable but will 

be penalized in the calculation of the objective function. The penalty 

will increase with increase of the deviation of the achievable solution, 

e`̃i,t from the target solution, 𝑒𝑖,𝑡.  
 

Subject to: 

Model Constraints (for Multi-reservoir system): 

a. Maximum Allocation of Energy (does not require lower level 

optimization):  

This constraint is applied to validate that allocated energy is less than or 

equal to the actual availability of energy each reservoir each day. It is 

unrealistic to allocate more energy than actually will be available on a 

given day:  

𝑒𝑖,𝑡 – 𝐸̃𝐴,𝑖,𝑡(𝐸̃𝐴,𝑖,𝑡−1, 𝑒𝑖,𝑡−1, 𝑒̃𝑖,𝑡
𝑚𝑎𝑥,1)   ≤  𝛿                                    (27)               

where, 

𝐸̃𝐴,𝑖,𝑡  =  𝐸̃𝐴,𝑖,𝑡−1  – 𝑒𝑖,𝑡−1  +  𝑒̃𝑖,𝑡
𝑚𝑎𝑥,1                                         (28)                                                            

𝐸̃𝐴,𝑖,𝑡 is the actual availability of energy in MWh at day t for reservoir I, 

𝑒𝑖,𝑡 is the decision of allocation of energy in MWh on Day t for reservoir 

i, 𝑒̃𝑖,𝑡
𝑚𝑎𝑥,1

 is the maximum energy that can be generated in MWh on day 

t for reservoir i, δ is the maximum tolerance for violation and is set as 1 

MWh. We treat Equation (27) as a Reliability Constraint. Therefore, 

Equation (27) becomes:  

𝑃𝑟{ 𝑒𝑖,𝑡  – 𝐸̃𝐴,𝑖,𝑡(𝐸̃𝐴,𝑖,𝑡−1, 𝑒𝑖,𝑡−1, 𝑒̃𝑖,𝑡
𝑚𝑎𝑥,1)   ≤  𝛿 } ≥  𝑅,   0 ≤ 𝑅 ≤ 1   (29)                                                        

where R is the reliability factor (i.e., the probability of meeting the 

constraint).    

 

b. Total Energy (does not require lower level optimization): 

This constraint is applied to validate that the total allocation of 

flexibility during the optimization period is equal to the maximum total 

flexibility we get from Stage 1 optimization results. It is unrealistic to 

allocate more flexibility than is actually available during the 

optimization period. In addition, it is not beneficial economically to BPA 

if we keep some flexibility without allocating at the end of optimization 

period.  Storing extra water will increase water level in storage and 

forebay elevation which needs to be at a fixed range at the end of 

optimization period, as given by: 

0 ≤  ∑ ei,t
14
𝑡=1  −   ∑ 𝑒̃𝑖,𝑡

𝑚𝑎𝑥,114
𝑡=1   ≤  𝑡𝑜𝑙; 𝑖 = 1, . . , 𝑁                            (30)                                                                                         

where 𝑡𝑜𝑙 is maximum allowable deviation and is set as 0.2% of total 

energy ∑ 𝑒̃𝑖,𝑡
𝑚𝑎𝑥,114

𝑡=1 . In the future, we can further tighten the allowance. 

We consider Equation (30) as a Reliability Constraint. Therefore, 

Equation (30) becomes:  

𝑃𝑟{  0 ≤  ∑ ei,t
14
𝑡=1  −   ∑ 𝑒̃𝑖,𝑡

𝑚𝑎𝑥,114
𝑡=1   ≤  𝑡𝑜𝑙  } ≥  𝑅,   0 ≤ 𝑅 ≤ 1     (31)                                                   

where R is the reliability factor.  

 

c. Minimum Allocation of Energy (does not require lower level 

optimization): 

We assume that there will be sufficient energy generation each period to 

meet the demands at a minimum: the energy sectors must meet 

contracted demand. They cannot hold the water for future use without 

meeting current demand. Therefore, there will not be instances of 

negative flexibility, as quantified by: 

∑ 𝑒𝑖,𝑡
𝑁
𝑖=1   ≥ 𝑑𝑡 +  𝛿                                                                      (32)                                                          

where ∑ 𝑒𝑖,𝑡
𝑁
𝑖=1  is the total allocated energy in MWh which is the sum 

of the energy allocation from N reservoirs, 𝑑𝑡 is the total demand on 

Day t in MWh, and  𝛿 is a very small value set as 1 MWh.  

 

d. Deviation from target allocation (requires result of lower-

level optimization): 

This constraint is given by: 

dev𝑖,𝑡 = | (𝑒𝑖,𝑡  – µ( e`̃i,t)| = 0                                                  (33)                                                            

where  e`̃i,t is the achievable allocated energy in MWh for reservoir i 

and day t, closest to the target energy allocation 𝑒𝑖,𝑡  satisfying all the 

constraints (Physical, Operational and other Probabilistic constraints) in 

the Nested Optimization with reliability factor R. This constraint  dev𝑖,𝑡 
is handled by penalizing the violation in the Upper level objective 

function (Equation 24). 

Below we describe the Lower Level Optimization mathematical 

formulation to achieve the mean of achievable energy µ( e`̃i,t) 
 

3.2.2 Lower Level Optimization Problem 

While the upper level problem set a target decision of allocation of 

energy, the lower level problem focuses on safe operational strategy by 

making sure the target meet the physical and operational constraints of 

the reservoirs. The objective function is to minimize the deviation of 

allocation of energy (achievable solution from lower level) from the 

target allocated flexibility set in the upper level. The lower level 

optimization will be solved first and will provide us an achievable 

solution of allocated flexibility closest to the target set in each iterations 

of the upper level flexible-robust optimization problem. Below is the 

mathematical formulation of the Stage 2 Lower level optimization 

problem: 

Model Inputs:  

• Demand, D = [𝑑1, 𝑑2, … , 𝑑14] 
• Maximum energy generation each day for each reservoir  

𝑬̃𝒎𝒂𝒙,𝟏 obtained from the output of previously mentioned 

Stage 1 problem.  

• Allocated energy (target set from previously mentioned Stage 

2 Upper level problem) 

• Inflows, 𝑸̃𝒊𝒏 

 

Model Decision Variables:   

The total outflows at each time step and each reservoir are defined as 

decision variables in the optimization. Each row represents daily time 

steps of 14 days (t =14) and each column represents number of 

reservoirs (N = 3 in this case study). 𝑸`∗𝒐𝒖𝒕,𝑺𝒕𝒂𝒈𝒆𝟐 is represented as 

follows: 

[𝑄𝑜𝑢𝑡,1,1, 𝑄𝑜𝑢𝑡,1,2, …… . . , 𝑄𝑜𝑢𝑡,1,𝑡 

⋮ 
  

𝑄𝑜𝑢𝑡,𝑁,1, 𝑄𝑜𝑢𝑡,𝑁,2, …… . . , 𝑄𝑜𝑢𝑡,𝑁,𝑡]        
                                  

Model Objective:   

Minimize the total deviation from target: 

min
𝑄𝑜𝑢𝑡,𝑖,𝑡

∑  (∑ 𝑒𝑖,𝑡  – e`̃i,t(Qout,i,t, hd̃t(FB̃t,  TWt), ξ𝑡)
𝑁
𝑖=1 )2 14

t=1               (34)                                                       
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where, 

e`̃i,t = 𝜂 × 9.81 × ℎ𝑑̃𝑖,𝑡(𝐹𝐵̃𝑖,𝑡 ,  TWi,t) × 𝑄𝑜𝑢𝑡,𝑖,𝑡 × 8.6310 × 10
−3 ×

ξ𝑡                                                                                                         (35) 

In this Equation, 𝑒𝑖,𝑡 is the target energy of reservoir i in MWh should 

be generated to meet the target allocation of flexibility on day t, e`̃t is 

the actual energy generated in MWh on day t,  𝜂 is the efficiency of the 

reservoir, taken as 0.75, ℎ𝑑̃𝑖,𝑡  is the head in ft, and ξ𝑡 is taken as 1 hour. 

 

Subject to: 

Model Constraints:  

➢ Operational Constraints:  

We include all the operational constraints implemented in Stage 1 

optimization problem as per Equation 7, 10, 14, 15 and 18. Just as in 

Stage 1, we convert Equation 7, 10, 15 and 18 into Probabilistic 

constraints as per equation 9, 12, 17 and 19 respectively.  

➢ Other constraints:  

Below constraints are included in the lower level to make sure the lower 

level optimal solution (Achievable allocation of energy) is within the 

feasible design space of the upper level. In other words, the achievable 

allocation of energy does not violate the constraints (Equation 29, 31 

and 32) mentioned in the upper level. Since the lower level optimization 

will be solved first and the achievable solution will always be feasible 

to the upper level design space, this will guarantee the final optimal 

solution of Stage 2 bi-level optimization problem be feasible in upper 

and lower level.   

 

a. Maximum Allocation of Energy  

e`̃𝑖,𝑡(Qout,i,t, hd̃i,t, ξ𝑡) – 𝐸`̃𝐴,𝑖,𝑡(𝐸`̃𝐴,𝑖,𝑡−1, e`̃𝑖,𝑡−1, 𝑒̃𝑖,𝑡
𝑚𝑎𝑥,1)   ≤  𝛿           (36)                                                                                   

where, 

𝐸`̃𝐴,𝑖,𝑡  =  𝐸`̃𝐴,𝑖,𝑡−1  – e`̃𝑖,𝑡−1  +  𝑒̃𝑖,𝑡
𝑚𝑎𝑥,1

                                      (37)                                                           

𝐸`̃𝐴,𝑖,𝑡 is the actual availability of energy in MWh at day t after allocating 

achievable flexibility for t-1 days obtained from lower level 

optimization, e`̃𝑖,𝑡−1 is the energy generated in MWh on Day (t−1), 

𝑒̃𝑖,𝑡
𝑚𝑎𝑥,1

 is the maximum energy that can be generated in MWh on day t, 

δ is the maximum tolerance for violation and is set as 1 MWh. We 

consider Equation 36 as a Reliability Constraint. Therefore, Equation 

36 becomes:  

𝑃𝑟{ e`̃𝑖,𝑡(Qout,i,t, hd̃i,t, ξ𝑡) – 𝐸`̃𝐴,𝑖,𝑡(𝐸`̃𝐴,𝑖,𝑡−1, e`̃𝑖,𝑡−1, 𝑒̃𝑡
𝑚𝑎𝑥,1)   ≤

 𝛿} ≥  𝑅,   0 ≤ 𝑅 ≤ 1                      (38) 

where R is the reliability factor.    

 

b. Total Energy during the Optimization period 

0 ≤  ∑ ei,t
14
𝑡=1  −   ∑ e`̃i,t(Qout,i,t, hd̃i,t, ξ𝑡) 

14
𝑡=1 ≤  𝑡𝑜𝑙                         (39)                                                                                           

𝑡𝑜𝑙 is maximum allowable deviation and is set as 0.2% of total energy 

∑ ei,t
14
𝑡=1 . We consider Equation (39) as a Reliability Constraint. 

Therefore, Equation (39) becomes:  

𝑃𝑟{ 0 ≤  ∑ ei,t
14
𝑡=1  −   ∑ e`̃i,t(Qout,i,t, hd̃i,t, ξ𝑡) 

14
𝑡=1 ≤

 𝑡𝑜𝑙 } ≥  𝑅,   0 ≤ 𝑅 ≤ 1                                                                      (40) 

where R is the reliability factor.  

 

c. Deviation from target: 

We have included this constraint to reduce the design space of the lower 

level problem since we already know that we want to get as close as the 

target allocation of flexibility ei,t as possible. Thus, we know the global 

optimal solution for the lower level objective function (Eq 34) is 0. This 

constraint will set bounds around the global optimal solution so that the 

optimizer will search for best solution in the neighbourhood of the 

global optimum point. This will at least guarantee a local convergence 

in the vicinity of the global convergence instead of converging to local 

minima which is far away from the true optimal solution  

| ei,t– e`̃i,t(Qout,i,t, hd̃i,t, ξ𝑡)|  ≤  𝛿                                            (41)                                                             

where e𝑖,𝑡  is the target energy in MWh of reservoir i should be generated 

to meet the target allocation of flexibility on day t, e`̃𝑖,𝑡  is the actual 

energy generated in MWh on day t of reservoir i, δ is the maximum 

deviation from the target and is set as 1 MWh. We consider Equation 41 

as a Reliability Constraint. Therefore, Equation (41) becomes:  

𝑃𝑟{ | ei,t– e`̃i,t(Qout,i,t, hd̃i,t, ξ𝑡)|  ≤  𝛿} ≥  𝑅,   0 ≤ 𝑅 ≤ 1       (42)                                                            

where R is the reliability factor.  

 

d. Minimum Allocation of Energy to meet daily demands: 

∑ e`̃𝑖,𝑡
𝑁
𝑖=1   ≥ 𝑑𝑡 +  𝛿                                                                  (43)                                                            

where ∑ e`̃𝑖,𝑡
𝑁
𝑖=1  is the total achievable energy in MWh which is the sum 

of the energy generation from N reservoirs, 𝑑𝑡 is the total demand on 

Day t in MWh, and  𝛿 is a very small value set as 1 MWh. We consider 

Equation 43 as a Reliability Constraint. Therefore, Equation (43) 

becomes:  

𝑃𝑟{ ∑ e`̃𝑖,𝑡
𝑁
𝑖=1   ≥ 𝑑𝑡 +  𝛿} ≥  𝑅,   0 ≤ 𝑅 ≤ 1                               (44)                                                         

where R is the reliability factor.  

 

To summarize the model outputs: 

Lower Level Optimization: Model Output: 

• Optimal Outflow corresponding to achievable allocation of 

flexibility, 𝑸`∗𝒐𝒖𝒕,𝑺𝒕𝒂𝒈𝒆𝟐     

• Deviation from target allocated flexibility, 𝜺𝒉  

• Achievable allocated energy  𝑬`̃ closest to the target allocation 

E. 

 

Upper Level Optimization: Model Output: 

• Optimal Outflow corresponding to achievable allocation of 

flexibility, 𝑸`∗𝒐𝒖𝒕,𝑺𝒕𝒂𝒈𝒆𝟐 

• Achievable allocated energy  𝑬`̃ closest to the target allocation 

E. 

• Maximum Expected Net Revenue in selling the Flexibility, 

𝑹̃𝒎𝒂𝒙  
 

4. MATHMATICAL APPROACH 

Figure 5 shows an overall framework of methodologies used in each 

individual stages and levels of the model (Stage 1, Stage 2 upper level 

and lower level) to solve the respective optimization problems. Bi-level 

optimization is known to be computationally very expensive [36] and 

one of the research interests is to decrease the computational cost of the 

model since energy sectors would need to make decisions within a 

specific timeframe. So far with the Bi-level approach and the integration 

between robust optimization and the Real Option model, we have 

claimed to have a better and robust decision-making process in 

allocating flexibility in Hydro-energy sectors. It is evident that with such 

complexities in the model, the computational cost will be significant. A 

factor to consider is that if the model takes days to provide decisions, it 

will not be reasonable or efficient for practical implementation. 

Therefore, as our focus in this paper is to build a model and also 

ensuring that can be applicable to real world scenarios, we have used a 

truncated KL-expansion [37] to reduce the dimension of the problem 

and thereby obtain faster uncertainty quantification and propagation of 

uncertainty with minimum loss of accuracy. Previous attempts have 

been done to reduce the dimension of the decision variables using a 

truncated KL- expansion [38]. In this paper, we reduced the dimensions 

of the uncertain input parameters of the multi-reservoir system. We have 

further extended the work on dimension reduction during simulation or 

uncertainty propagation of the system and quantification of uncertainty 
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of the quantities of interest using Stochastic Collocation methods [39] 

with a Sparse Grid technique [40]. Utility Theory [41] and Inverse 

Reliability method [42] are applied for evaluating robust objective and 

validating probabilistic constraints. We provide detail descriptions on 

the methodologies in the below sections. 

 

4.1 Uncertainty Quantification of the Input Parameters: 

We considered multiple sources of Uncertainty of Inputs: Inflows and 

Market Price of selling Electricity. Given an ensemble of forecast at 

discrete times, we quantified the uncertainty by applying a Truncated 

KL- Expansion of the forecast of the input data and therefore generated 

M1 and M2 number of realizations for Inflows and Price, respectively. 

Below we follow the formulation of the Truncated KL-expansion from 

[30], applied here to both Inflows and Price Uncertainty: 

𝑄𝑖𝑛,𝑡(𝑡, 𝑦1𝐽(𝜔)) = µ𝑄𝑖𝑛,𝑡(t) +∑ √𝜆1,𝑖𝜓1,𝑖(𝑡)𝑦1𝐽,𝑖(𝜔)
𝑁1
𝑖=1                      (45)                                             

𝑃𝑡(𝑡, 𝑦2𝐽(𝜔)) = µ𝑃𝑡(t) +∑ √𝜆2,𝑖𝜓2,𝑖(𝑡)𝑦2𝐽,𝑖(𝜔)
𝑁2
𝑖=1                    (46)                                                 

1𝐽 = 1:𝑀1;                      2𝐽 = 1:𝑀2 

Where 𝑄𝑖𝑛,𝑡 (𝑡, 𝑦1𝐽(𝜔)) and 𝑃𝑡(𝑡, 𝑦2𝐽(𝜔)) are the 1Jth and 2Jth stochastic 

realizations respectively for 𝑄𝑖𝑛,𝑡̃ and  𝑃𝑡̃ with sample means µ𝑄𝑖𝑛,𝑡(t) 

and µ𝑃𝑡(t); 𝜆1, 𝜆2 are eigenvalues and 𝜓1, 𝜓2 are eigenfunctions of the 

sample covariance computed from the ensemble forecast of the Inflows 

and Price uncertainty respectively; 𝑦1J(𝜔) and 𝑦2J(𝜔) are (mean 0, 

variance 1) random variables for 𝑄𝑖𝑛,𝑡̃ and  𝑃𝑡̃ respectively. N1 and N2 

are the number of terms required to cover ≥ 90% of the variance. 

Therefore, in this problem, we considered N1 and N2= 3. Therefore, we 

overcame the curse of dimensionality of the high dimensional random 

space and reduced the dimensions of each uncertain Input parameters 

from 14 (daily timestep of 14 days optimization period) to 3 dimensions, 

covering ≥ 90% of the variance and with reduction of computational 

expenses to generate the realizations of uncertain input parameters. This 

will then significantly reduce the overall computation effort of the 

calculation of the expectation and variance of all the Quantities of 

Interests (QoI) such as Storage, Forebay, Head, Hydroenergy and 

Revenue in each iteration of the optimization. Considering a single 

reservoir (i =1), when we compare this technique with Full Tensor 

Numerical Integration for 3 nodes in computing the expectation or 

variance of objective function (2), we see we need to run 314 runs (nm, 

where n is number of nodes and m is the number of uncertain variables). 

However, with the reduced random space to 3 applying KL-expansion, 

we only need 33 runs (for Full Grid) to compute the expectation and 

variance.  It is obvious to mention that considering multiple reservoirs, 

the reduction in computation cost will only improve. Therefore, with 

this approach we could reduce the computational expense of the 

simulation of QoI and function evaluations significantly which is 

always a challenging task in robust optimization of large-scale 

problems. 

 

4.2 Uncertainty Propagation: 

To propagate the uncertainty of the inputs through the system, we started 

with applying Stochastic Collocation method and generated M1 and M2 

KL-realizations of the inputs respectively (Equation 45, 46) on the 

collocation points considering a Full Grid. In the previous section, we 

have already explained the idea of applying KL-expansion and how this 

technique succeeded in computational cost reduction. However, 

considering a Sparse Grid technique instead of Full Grid, we have 

further reduced the computational effort of simulations and function 

evaluations without sacrificing any significant accuracy. We further 

assumed a uniform distribution for the random variables. Therefore, 

Level 3 Smolyak Sparse Grid Clenshaw-Curtis [43] collocation nodes zj 

and weights wj has been considered in this problem. For each j, 1j = 

1:m1; 2j = 1:m2 and m1 < M1; m2 < M2, we evaluated the Input 

functions 𝑄𝑖𝑛,𝑡(𝑡, 𝑧𝑗) and 𝑃𝑡(𝑡, 𝑧𝑗) respectively. Thus, equations (44), 

(45) has been modified as below:        

𝑄𝑖𝑛,𝑡(𝑡, 𝑧1𝑗) = µ𝑄𝑖𝑛,𝑡(t) +∑ √𝜆1,𝑖𝜓1,𝑖(𝑡)𝑧1𝑗,𝑖
𝑁1
𝑖=1                         (47)                                                 

𝑃𝑡(𝑡, 𝑧2𝑗) = µ𝑃𝑡(t) +∑ √𝜆2,𝑖𝜓2,𝑖(𝑡)𝑧2𝑗,𝑖
𝑁2
𝑖=1                                (48)                             

1𝑗 = 1:𝑚1;                      2𝑗 = 1:𝑚2 

To propagate the uncertainty through the system, we simulate 

deterministically the corresponding quantities of interests like Storage, 

Forebay, Head, Hydroenergy and Revenue at the same collocation 

points. 

 

4.3 Evaluating Robust Objective and Validation of Probabilistic 

Constraints: 

We have modified our objective function into Utility Function [41] to 

calculate the maximum/minimum Expected Utility. Applying the 

Truncated KL expansion and Stochastic Collocation method as 

described in the previous sections, we calculate our objective function, 

Y deterministically and then convert to the Utility Function U(Y). We 

calculate the Expected Utility, E(U(Y)) using the Clenshaw-Curtis 

collocation weights.  

Since we are doing robust optimization, we have converted all 

the constraints into Probabilistic Constraints as shown in Problem 

description. Once we propagate the input uncertainty through the system 

using Stochastic Collocation and Sparse Grid methods and evaluate the 

means and standard deviation of QoI, we validate the Probabilistic 

Constraints using Inverse Reliability Method [42]. 

 

4.4 Optimization Method and Convergence Criteria: 

We applied Sequential Quadratic Programming (SQP) method to solve 

the proposed Optimization Problem. We have used the in-built 

MATLAB function “fmincon” for the SQP algorithm [44] to solve 

optimization problems in all stages and levels as described in Sections 

3. The convergence criteria are step size tolerance, constraint violation 

tolerance, function tolerance; all set as 𝜉 = 10−5 and maximum 

function evaluations set as 40000. 

 

5. RESULTS 

In this section, we will show the efficiency of the Real Option model 

and finally the results of the Two-Stage Bi-Level Flexible-Robust 

Optimization model having daily time steps for the 14 day optimization 

period. To illustrate the efficiency of the integration of the RO model 

with Robust optimization framework in optimal decision of allocation 

of flexibility, we consider a simple Single Reservoir (Grand Coulee) 

problem with simplified Two-Stage Single Level optimization model. 

In this model, the objective of Stage 1 and Stage 2 upper level is similar 

to our proposed model in this paper. However, unlike our proposed 

model, only one reservoir has been considered with simplified version 

of Operational Constraints, considering only Storage constraints and 

without any implementation of bi-level structure. As we have 

mentioned, the bi-level structure has been incorporated in the proposed 

model to integrate the realistic complex operational constraints 

(Storage, Forebay, Power etc). Reader can further read the detailed 

mathematical formulation of the simplified model in [45]. The reason 

we have started with a simplified model with minimum constraints is to 

make sure we have sufficient design solutions. If the design space is too 

small, we may not see any benefits of RO analysis. Thus, for 

understanding the efficiency of integration of RO model in providing 

better decisions by reducing possible future shortages, we first 

considered a simplified Single Level Model with large design space 

having many feasible solutions. We show the decisions provided by the 

model with and without the consideration of Real Option Analysis. We 

therefore have two model policies to evaluate: 
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a) Policy 1 in which the Real Option valuation is ignored. 

b) Policy 2 in which the Real Option valuation is included.   

Table 3 shows the initial conditions of Storage, Inflows and Outflows of 

GCL used in the models. Uncertainty has been considered only on 

Inflows. Figures 6, 7 show the results of the 14-day period from the 

optimization with 27 different inflow scenarios. Figure 6 shows the 

increase in Net Revenue one will attain by selling flexibility following 

Policy 2 (i.e., considering the Real Option analysis) instead of Policy 1. 

Figure 7 shows the increase (percentage) for the respective 27 scenarios. 

We can see the percentage increases are generally in the range of 2% to 

40% which is roughly 10 to 80 thousand dollars for this case study. 

However, when there are very high inflows and therefore high storage 

of water, the real option model will not provide significant valuations as 

the probability of future shortages is negligible, thus the future value of 

flexibility is dominated by the selling price of electricity. In such case, 

the energy sectors can neglect the RO model and allocate flexibility 

when there is higher selling price. Therefore, we can see in the scatter 

plots (Fig 6, 7), that a few scenarios have no increase in revenue with 

the RO valuation and therefore we get the same results from Policy 1 

and 2, which seems reasonable. Overall, we found an improvement in 

decision making of allocation of flexibility by integrating the RO model 

with the robust optimization framework, especially in case of low 

inflows or storages (dry seasons). Now that we understand the efficiency 

of RO model, we will move forward and show the results of our Two-

Stage Bi-Level Flexible-Robust Optimization model as described in 

Section 3 for a multi-reservoir system. Also, two sources of uncertainty 

are considered: Price of electricity and Inflows. We have considered 3 

dams (Grand Coulee, Lower Granite and McNaire) with two channels 

of Inflows with uncertainty. In this 3 reservoir system, we have two 

uncertain input channels of inflows into GCL and LWG. However, the 

third reservoir, MCN is located at the downstream of the GCL and 

LWG; therefore, the inflow into MCN is the (deterministic) value of the 

sum of the deterministic robust decision of total outflows of GCL and 

LWG. Table 3 shows the initial conditions of Storage, Inflows and 

Outflows of GCL, LWG and MCN. In this case study, we assumed 

demand, D = 0.95*µ(𝐸̃𝑚𝑎𝑥,1)(Stage1 output). We have considered the 

historic data of the Inflows of 3 reservoirs from the NOAA website and 

generated the predictions with the help of KL expansion. Figure 8, 9 and 

10 are the realizations of Inflows of GCL, LWG (both calculated from 

Eq. 48) and log of Prices (calculated from Eq. 49) respectively generated 

from truncated KL-expansion covering ≥ 90% variance. The 

realizations shown are selected from a larger population of realizations 

(from a Full Tensor Grid) using a Sparse Grid for the sake of increasing 

computational efficiency of our model without sacrificing significant 

accuracy. We use log of Price to avoid any negative values in Price 

realizations which will be unrealistic as Price cannot be negative.  

The results obtained from the Bi-Level Flexible-Robust Optimization 

model (considering Real Option valuation) have been compared with 

the standalone Robust Optimization model (ignoring Real Option 

valuation). Figure 11 shows the respective optimal outflows of the 3 

reservoirs. Figure 12 represents the optimum allocation of total 

flexibility (combining GCL, LWG and MCN) among all 3 reservoirs, 

over 14 days. Figure 13, 14 and 15 represent the optimal decision of 

allocation of energy from GCL, LWG and MCN, respectively, to attain 

the allocation of total flexibility as shown in Fig 12. As the uncertainty 

on Inflows increases in the future (Fig 8, 9), most of the allocation is 

done in later time periods to minimize a chance of shortage. The Real 

Option analysis provide the valuation of holding the water for future 

use. However, some of the allocation of flexibility has been done on the 

early days due to higher prices (Fig 10) on these days, thereby to 

increase revenue. The uncertainty on the Prices has been handled by 

Robust Optimization.  

Thus, the proposed integrated Flexible-Robust optimization model 

helps manage the trade-off between allocations of flexibility now due to 

higher market prices of electricity (maximizing revenue; handled by 

Robust optimization) or later due to higher uncertainty on Inflows 

(minimizing risk of shortage; handled by Real Option model). The 

expected net revenue obtained is $3935336 and the computational time 

taken is 1 hr. approx. (Processor I7-4720HQ CPU @2.6GHz, 16GB 

RAM and used the MATLAB Version 2016a). The Net Revenue is the 

revenue achieved from selling the flexibility and meeting the required 

demand. Next, we run the same case study with Two-stage Bi-level 

Robust Optimization model where Stage 1 is the same as our proposed 

model, but the Real Option analysis has not been considered in the Stage 

2 Upper Level. We observe similar optimal solutions as for Two-Stage 

Bi-level Flexible Robust Optimization. However, when we evaluate the 

RO value for this optimal solution, we achieve a significant option 

value (≫ 0). Thus, there is a role in RO analysis, but we still get similar 

solutions in both cases. This is most likely due to the fact that by 

including the large number of constraints at both levels of the 

optimization reduces the design space, which provides limited feasible 

solutions. Thus, even our optimal solution has significant future value 

of flexibility which the decision makers could lose and thereby lose 

revenue, this is the best feasible solution. In this case, although the RO 

model did not improve the decision, it still plays a significant role in 

validating that the optimal solution is the best possible decision; we will 

not get a better solution which is feasible (not violating physical, 

operational constraints of the reservoirs) and can also increase net 

revenue by reducing possible future shortages.  With more solutions in 

the design space (large design space), we can see potential improvement 

in the optimal decision in allocating flexibility due to integration of RO 

model with Robust optimization framework as shown in Fig 6, 7 (for 

Single Reservoir System).  

Next we compare our proposed model with the Single Stage Single 

Level Robust Optimization model as described in [17] for our 3 

reservoir system case study. Table 4 provides the comparison of 

solutions. In our proposed model, the first stage gives the maximum 

energy generation over the optimization period unlike in the Single 

Stage Single Level Robust Optimization model. Thus in our case study 

of 14 days optimization period, we see our proposed model provides 

more total power generation over the 14 day period and thereby more 

flexibility to allocate, thereby generating higher revenue. Also, since our 

proposed model has a flexible-robust objective unlike in the Single 

Stage Single Level Robust optimization model, future value of 

flexibility is evaluated using RO analysis, reducing future shortages and 

increasing Net Revenue. Therefore, we can see an improvement 

[$30764 (1%)] in the Net Revenue from our proposed Two-Stage Bi-

level Robust Optimization model for two weeks’ optimization period. 

 

6. CONCLUSION 

This research has been conducted to resolve the dilemma faced by many 

energy sectors in their optimal decisions of allocation of energy 

considering high future uncertainty and consideration of various 

complex constraints in the multi-reservoir system. To provide an 

optimal operation in energy allocation problems, we have presented the 

mathematical formulation of a proposed Bi-Level Flexible Robust 

optimization model for multi-reservoir system. We demonstrated our 

approach on 3-reservoirs of the Lower Columbia River system in a case 

study having two channels of inflows from upstream. Two sources of 

uncertainty (Inflows, Price) have been considered in this case study to 

demonstrate the handling of uncertainty in the model. The bi-level 

programming mitigates the compatibility issues of the integration of RO 

model with the robust optimization framework by dividing the overall 

objective into two strategies. The upper level is the economic strategy 
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which solely focuses on maximizing revenue while minimizing future 

probability of shortage of flexibility due to current allocation, by 

successfully integrating robust optimization with the real option model 

(Flexible-Robust Objective). The lower level is the operational strategy 

which solely focuses on the safe and feasible operations in the allocation 

of flexibility. The results demonstrate that the Bi-Level Flexible Robust 

Optimization model provides decisions with higher generation of 

flexibility and better net revenue. Therefore, the proposed model is more 

efficient than the existing standalone single level robust optimization 

model in optimal decision of allocation of flexibility by considering 

Real Option analysis, especially in dry seasons with lower inflows 

and/or storages. Even when our proposed model (Bilevel model 

integrated with RO model) did not show improvement in the decision 

(compared to the Bilevel model without RO model) due to lack of 

feasible solutions (limited design space) for the multi-reservoir system, 

it ensures the decision makers in the energy sectors that the best possible 

decision has been made which is feasible to the operations and has the 

minimum risk of future shortages. Thus, the role of Real Option analysis 

may not always provide a better decision, but its inclusion acts as a 

validation that we have found the best optimal solution considering the 

balance of generating revenue in the present while managing water 

shortage risk in the future. The Real Option model can be implemented 

with any general energy allocation problem which deals with loss of 

revenue in the case of future shortage. The computational efficiency of 

the model has been increased by implementing KL-Expansion and 

Stochastic collocation with Sparse Grid methods for uncertainty 

quantification of the inputs and uncertainty propagation to the QoI.  For 

future work, we will work on incorporating uncertainty on decision 

variables and demand. Further research on improving the accuracy of 

the model will be done by implementing different classical, heuristic 

and/or the combination of both algorithms in solving large scale 

complex bi-level energy allocation problems.  
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Table 1. Coefficients used to calculate Tail-water (Eq. 5, 6) 
Coefficients  Grand Coulee 

Reservoir 
Lower Granite 
Reservoir 

 McNaire 
Reservoir 

A 447.97 122.81 18.60 

B 0.0901 0.0210 0.0202 

C 0.5286 0.8060 0.9234 

 

Table 2. Coefficients used to calculate Forebay Elevation (Eq. 11) 

Coefficients  Grand Coulee 
Reservoir 

Lower Granite 
Reservoir 

 McNaire 
Reservoir 

A -3.63×10-6 -3.6467×10-4 0 

B 0.0406 0.2689 0.0571 

C 1208 724 334.5 

 
Table 3. Initial Conditions for Optimization 

 Grand Coulee 
Reservoir 

Lower Granite 
Reservoir 

McNaire 
Reservoir 

Storage (kcfs-
day) 

2260 47.8 79.1 

Inflows (kcfs) 81.4519 11.0446 131.2668 

Outflows (kcfs) 55.7246 13.5364 127.0271 

 

Table 4. Comparison of the models 

 Two Stage Bi-
level Flexible-
Robust 
Optimization 
Model 

Single Stage Single 
Level Robust 
Optimization Model 

Total power generation 
MW (14 days) 

1139976 1138632 

Increase in Power 
generation MW 

1344 (0.12 %)  

Net Revenue at 
Optimal Decision* 

$3935336 $3904572 

Improvement $30764 (1%)  

Note*: We run the Single Stage Single Level Robust Optimization 

Model (ignoring Real Option analysis during optimization) and then 

calculate the Net revenue at optimal decision provided by the model 

considering Real Option analysis.  
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Table 5. Key observations from the results (Fig. 6 -15) 

Figure # Key Observations 

6 Increase in Revenue from optimal decision by 
integrating Real Option Model in Robust optimization 
framework for most of the Scenarios (test cases). 

7 Similar observation as 14 in terms of percentage. We 
can see mean increase from 27 different inflow 
scenarios (test cases) is around 15-20%. 

8, 9, 10 We provide a sample of 27 truncated KL generated 
realizations of inflows in Grand Coulee, Lower 
Granite reservoirs and log of Price respectively, which 
quantifies >90% of the overall uncertainty, where we 
see the uncertainty in inflows is greater in future days 
and the same is roughly constant for Prices.  

11 Optimal decision (Outflows) from the proposed 
model, as we can see higher total allocation (GCL + 
LWG +MCN) in the future days to account for higher 
uncertainty in future and minimize the possibility of 
future shortage 

12, 13, 14, 
15 

Similar observation as 9 in terms of Energy, where 
figure 10 provides the total optimal allocation in 
Energy and figure 11, 12 and 13 provides the optimal 
allocation in GCL, LWG and MCN respectively. 

 


