
Proceedings of the ASME 2014 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2011
August 17-20, 2014, Buffalo, NY, United States of America

DETC2014-35244

DRAFT: APPLYING ROBUST DESIGN OPTIMIZATION TO LARGE SYSTEMS

Matthew G. McIntire
Email: mcintima@engr.oregonstate.edu

Veronika Vasylkivska
Email: vasylkiv@science.oregonstate.edu

Christopher Hoyle
Department of Mechanical, Industrial, and Manufacturing Engineering

Oregon State University
Corvallis, OR 97331

Email: chris.hoyle@oregonstate.edu

Nathan Gibson
Department of Mathematics

Oregon State University
Corvallis, OR 97331

Email: gibsonn@math.oregonstate.edu

ABSTRACT

While Robust Optimization has been utilized for a variety of
design problems, application of Robust Design to the control of
large-scale systems presents unique challenges to assure rapid con-
vergence of the solution. Specifically, the need to account for uncer-
tainty in the optimization loop can lead to a prohibitively expensive
optimization using existing methods when using robust optimization
for control. In this work, a robust optimization framework suitable
for operational control of large scale systems is presented. To en-
able this framework, robust optimization uses a utility function for
the objective, dimension reduction in the uncertainty space, and a
new algorithm for evaluating probabilistic constraints. The pro-
posed solution accepts the basis in utility theory, where the goal
is to maximize expected utility. This allows analytic gradient and
Hessian calculations to be derived to reduce the number of itera-
tions required. Dimension reduction reduces uncertain functions to
low dimensional parametric uncertainty while the new algorithm
for evaluating probabilistic constraints is specifically formulated to
reuse information previously generated to estimate the robust ob-
jective. These processes reduce the computational expense to en-
able robust optimization to be used for operational control of a
large-scale system. The framework is applied to a multiple-dam hy-
dropower revenue optimization problem, then the solution is com-
pared with the solution given by a non-probabilistic safety factor
approach. The solution given by the framework is shown to domi-
nate the other solution by improving upon the expected objective as
well as the joint failure probability.

1 Introduction

Robust design is the optimization of a system to be insensitive
in its objective and reliable in its constraints to parametric uncer-
tainty [1]. In the state of the art [2, 3, 4], the objective to be opti-
mized is a weighted combination of the mean and variance of the
performance function. The limitations and expense present in this
method are unacceptable when using robust optimization for the
control of large-scale systems with hundreds of decision variables,
and uncertain functions, rather than scalar parameters. First, uncer-
tain functions must be discretized, resulting in hundreds of highly
correlated uncertain parameters. This challenge can be overcome
through the use of a Karhunen-–Loève, or KL, transformation, de-
composing the uncertain functions to reduce the dimensionality of
the uncertainty to just a few standard normal variables. Second, us-
ing the weighted mean and variance formulation does not produce
acceptable results when the objective distribution is non-symmetric,
as higher variation above the mean is penalized the same as higher
variation below the mean. Logically, a distribution skewed toward
higher performance should be preferred over a distribution with the
same mean and variance that is skewed toward lower performance.
Third, it is not straightforward to calculate the gradient of the objec-
tive using the weighted sum method, due to the use of the variance
term in the objective. Using finite differencing to estimate the gradi-
ent and Hessian can be infeasible for large-scale control problems
due to the large number of decision variables. These challenges
are overcome through application of a utility function to the per-
formance, enabling a direct calculation of expected utility and its
gradient. Fourth, evaluating probabilistic constraints to ensure re-
liability typically does not use the available information resulting

1 Copyright c© 2014 by ASME

from the simulations run to calculate the robust objective. In this
work, that information is reused to construct a surrogate model for
each constraint which are evaluated using a new inverse reliability
method. The proposed framework incorporates these four methods
to enable robust optimization for operational control of large scale
systems.

The framework is demonstrated on a case study for daily
model-based control updates of the Columbia River Basin hydro-
electric system. The Bonneville Power Administration is look-
ing for a way to incorporate parametric uncertainty into the real-
time planning optimization of flow through ten major dams on the
Columbia and Snake Rivers in the states of Oregon and Washing-
ton. The system model contains thousands of decision variables, so
any local search optimization must take advantage of all gradient
information provided by the model.

2 Mathematical Background
The framework presented in this paper builds upon work

from mathematics, economics, and engineering: uncertainty quan-
tification, uncertainty propagation, utility theory, robust design,
reliability-based design, and numerical optimization.

2.1 Uncertainty Quantification: the KL Transform
We describe the method we use to introduce the uncertainty

into the system. Let (Ω,F ,P) be a complete probability space,
where Ω is the set of outcomes, F ⊂ 2Ω is a σ -algebra of events and
P : F → [0,1] is a probability measure. Assume that the parameters
P can be described as a matrix-valued function of finite number Nrv
of independent random variables {ξk}Nrv

k=1, i.e.

P(ω) = P(ξ1(ω),ξ2(ω), . . . ,ξNrv(ω)). (1)

Let ρk : Γk → R+, k = 1,2, . . . ,Nrv, denote the probability density
function of the random variable ξk, with the image Γk = ξk(Ω)⊂R,
k = 1,2, . . . ,Nrv. If the random variables {ξk}Nrv

k=1 are independent
then the joint probability density function ρ is given by the product
of the corresponding densities

ρ(z) =
Nrv

∏
k=1

ρk(zk), z ∈ Γ, zk ∈ Γk, (2)

where Γ = ∏
Nrv
k=1 Γk ⊂ RNrv is a support of the joint density func-

tion ρ . One way to obtain the finite dimensional representation
of a component pi j of the matrix P is possible with the help of
Karhunen-Loève expansion. This representation works for time-
dependent parameters. For the purpose of implementation several
assumptions need to be satisfied: a particular component pi j is a
random process; several independent realizations of pi j are avail-
able. Under these assumptions we can build a representation based
on the spectral decompostion of the covariance of pi j. For simplic-
ity of exposition let Q = pi j.

1. Suppose we have M realizations of the parameter Q mea-

sured at time points {t j}n
j=0, where t j = t0 + jh, h =

T − t0
n

,

j = 1, . . . ,n, and [t0,T] is a time interval of interest. By Qi(t j)
we denote the value of the i-th realization of the parameter Q
at the time point t j.

2. Then we compute the sample mean vector Q̄ =
(Q̄1, Q̄2, . . . , Q̄n)

T and an (n × n) covariance matrix C
with elements c j,k of the process Q using the following
formulas

Q̄ j = Q̄(t j) =
1
M

M

∑
i=1

Qi(t j) (3)

c j,k =
1

M−1

M

∑
i=1

(Qi(t j)− Q̄ j)(Qi(tk)− Q̄k). (4)

3. It follows that Q(t) can be represented in the form of its infinite
series representation, called the Karhunen-Loève expansion

Q(t) = Q̄(t)+
∞

∑
k=1

√
λkψk(t)ξk, (5)

where {λk,ψk}∞
k=1 are the eigenpairs of the integral equation

λψ(t) =
∫ T

t0
C(s, t)ψ(s)ds, (6)

with C(t j, tk) = c j,k; and {ξk}∞
k=1 is a sequence of uncorrelated

random variables with mean 0 and variance 1 defined by

ξk =
1√
λk

∫ T

t0
[Q(t)− Q̄(t)]ψk(t)dt, k ≥ 1. (7)

We assume that the eigenvalues are arranged in decreasing or-
der, that is, λ1 > λ2 > λ3 > · · · . In the case Q is a Gaussian
random process, {ξk}∞

k=1 are independent and identically dis-
tributed normal random variables with mean 0 and variance 1.

4. If the positivity of the random process is an issue, the
Karhunen-Loève expansion of the logarithm of a particular pa-
rameter can be considered instead.

The infinite representation of Q is not practical. The truncated rep-
resentation is used instead

Q(t)≈ QN(t) = Q̄(t)+
N

∑
k=1

√
λkψk(t)ξk. (8)

The number of terms N in the truncated representation of Q
can be chosen in different ways. One may use a fact that ∑

∞
n=1 λn =∫ T

t0 C(s,s)ds and based on this criteria choose the number of terms
that would contribute to the major part of the variance. Another
way to determine N is to look at the convergence rate of the eigen-
values and get rid of those that are close to 0, or insignificant in

2 Copyright c© 2014 by ASME

comparison with the first eigenvalue. For example, one can include
the eigenvalues λn that satisfy

λn < aλ1 (9)

for some pre-defined constant 0 < a < 1.

2.2 Utility Theory
In utility theory, for every uncertain outcome f resulting from

a choice of control variable X, there exists an associated certainty
equivalent z, an assured outcome that the decision-maker would be
ambivalent to choosing. That is, the decision maker would have
no reason to choose one over the other: the uncertain outcome, or
its certainty equivalent. Assuming the decision maker abides by
the axioms of consistent choice [5], there exists a monotonic utility
function U, defined implicitly

U(z) = E[U(f)], (10)

where E is the expectation operator. The utility function thus de-
fines the “utility” u of a given outcome f

u = U(f). (11)

If the preferred outcome is high, the utility function must be mono-
tonically increasing. If the preferred outcome is low, the utility
function must be monotonically decreasing. Furthermore, if the
decision maker is risk seeking, the utility function must be con-
vex downward, and if the decision maker is risk averse, the utility
function must be concave downward. If the decision maker is risk
neutral, the utility function must be linear. It is shown that an ex-
ponential utility function approximates (10) for the case of constant
risk aversion using the following argument adapted from [6].

First, define δz and ∆ f in terms of z, f , and the expected out-
come, E(f).

δz = z−E(f), (12)
∆ f = f −E(f). (13)

δz is the risk premium, the deviation of the decision maker’s cer-
tainty equivalent from the expected outcome, and ∆ f is the random
deviation of the outcome from its expected value. Rewrite (10) us-
ing equations (12) and (13)

U(E(f)+δz) = E[U(E(f)+∆ f)]. (14)

Next, apply the Taylor expansion to both sides, and assume f is
normally distributed, the mean E[∆ f] = 0 and the variance E[∆2

f] =

σ2
f . Next, assume that the magnitude of the risk premium is quite a

bit less than the magnitude of the uncertainty δ 2
z � σ2

f , and that the

uncertainty is small enough to disregard all terms third-order and
higher. This leaves

δz =
σ2

f

2

d2U(E(f))
d f 2

dU(E(f))
d f

. (15)

Now, constant risk aversion means that the risk premium is inde-
pendent of the mean output. Consequently, any change to f that
affects µ f but not σ f will not affect δz. Therefore,

d2U(f)
d f 2

dU(f)
d f

= c, (16)

where c is a constant. The solution of (16) is

U(f) =

{
a+bec f , c 6= 0
a+b f , c = 0

, (17)

where a and b are also constants. Because utility exists only to rank
outcomes on an interval (not ratio) scale, a is irrelevant, as is the
magnitude (but not the sign) of b. The exponential utility function
(17) can be parameterized according to the decision maker’s risk
aversion, and whether the preferred outcome is high or low. In the
case of risk-neutrality, c = 0 and b > 0 for increasing preferences,
b < 0 for decreasing. b > 0 in the case of risk tolerance and b < 0 in
the case of risk aversion. In both risk-tolerant and risk-averse cases,
the signs of b and c are the same for increasing preferences, and
opposite for decreasing preferences. The magnitude of c increases
in both directions from risk neutrality.

Substituting (16) back into (15) leaves

δz = c
σ2

f

2
, (18)

which itself may be combined with (12)

z = E(f)+
1
2

cσ
2
f . (19)

to finally derive a representation of the certainty equivalent as a
function of the mean and variance of an uncertain output.

2.3 Robust Design
Hazelrigg [5] encourages the maximization of expected utility

as the decision-making objective in engineering design. However,
due to the apparent difficulty in defining a utility function for a par-
ticular entity [3, 4], researchers in robust design have instead opted

3 Copyright c© 2014 by ASME

to utilize a weighted combination of the mean E(f) and variance
σ2

f of the performance function as their objective [2]. This way, the
decision-maker only has to specify one risk aversion coefficient, r,
in a robust objective such as

max E(f)− rσ
2
f , (20)

where r > 0 corresponds to a risk-averse decision maker, r < 0 cor-
responds to a risk-seeking decision maker, and r = 0 corresponds to
a risk-neutral decision maker.

It can easily be seen that (20) has the same form as (19). Thus,
optimizing a robust objective which is a weighted combination of
the mean and variance of a performance function is a good approx-
imation to optimizing the certainty equivalent given an exponential
utility function, the approximation of the utility function for con-
stant risk aversion. Or, the expression in (20) is approximately equal
to z in (10), given U has an exponential form.

2.4 Inverse Reliability Analysis (Probabilistic Con-
straints)

In deterministic optimization, we say that the problem must be
subject to inequality constraints of the form

gi ≤ 0 for i = 1, . . . ,Ng, (21)

where Ng is the number of constraints to be satisfied. We define a
probabilistic constraint as

P(gi > 0)−αi ≤ 0 for i = 1, . . . ,Ng, (22)

where ~α = (α1,α2, . . . ,αNg) is a vector of acceptable probabilities
of failure, one for each constraint. Typical α-values range from
10−1 to 10−6, depending on the consequences of violating each con-
straint. Joint failure probabilities are not considered in this method.
We test the joint failure probability of a solution after the optimiza-
tion completes.

In inverse reliability analysis [7], we utilize an idea from the
First Order Reliability Method (FORM), the most probable point
of failure (MPP). The MPP is defined for each constraint gi as the
most probable point in the uncertainty space such that gi = 0. As-
suming the uncertainty can be represented by a set of standard nor-
mal variables ~ξ , the two-norm of the MPP, known as the reliability
index β , can be used to calculate a first-order approximation of the
probability of failure by taking its quantile in the standard normal
distribution.

There are two relevant issues that preclude us using FORM to
calculate probabilistic constraints. First, the search for the MPP
may lead into areas of extremely low probability (such as in cases
with a negligible probability of failure), where the simulation model
may no longer be very accurate. Second, there is no known func-
tion that maps ∇xgi to ∇xP(gi > 0), and we must utilize available
gradient information for the framework to be efficient.

Inverse reliability analysis [7] assumes that there exists some
control settings X for each constraint such that P(gi > 0) = αi; that

is, that the MPP in that instance represents a probability of failure
exactly that which is maximally allowable. It then assumes that we
can approximate that unknown MPP (designated ~ξαi) by consider-
ing the set of all possible MPPs corresponding to a probability of
failure αi, and choosing the one which at the current x produces
the highest (worst) gi. This is an optimization problem for each
constraint at each iteration of the optimization over x.

~ξαi = max
~ξ

gi subject to Φ(‖~ξ‖) = αi (23)

We can then use the gi evaluated at each ~ξαi as appropriate substi-
tutes for the probabilistic constraints 22, as they will always cross
zero simultaneously in x.

2.5 Polynomial Chaos Representation
To assist in solving our problem in the stochastic context we

form a generalized Polynomial Chaos (PC) expansion of each con-
straint as a function of the random variables {ξk} described in sec-
tion 2.1 as a surrogate model. To illustrate the idea of the proposed
uncertainty approach, we illustrate the process on one constraint,
g = gi for some i = 1, . . . ,Ng. We want to determine the coefficients
of a PC expansion of each constraint for some fixed time t. The
representation of the constraint g in terms of a degree p expansion
is

gp(t,~ξ) =
Mp

∑
k=0

vk(t)Φk(~ξ), (24)

where ~ξ = (ξ1,ξ2, . . . ,ξNrv) is a vector of random variables in the
representation of P, (Mp + 1) is a number of basis functions used.
The functions {Φk}

Mp
k=0 are the orthogonal polynomials of a degree

at most p in each of Nrv variables. The maximum possible num-
ber of polynomial basis functions in this case is pNrv . Note that
the actual number of basis functions depends on if the same degree
polynomials are used in each random dimension for the approxima-
tion.

Each PC expansion coefficient can be found as an expectation

vk(t) = E[g(t,~ξ)Φk(~ξ)] =
∫

Γ

g(t,z)Φk(z)ρ(z)dz. (25)

The computation of the coefficients in (25) can be done efficiently
with the use of the stochastic collocation (SC) method. The outline
of the application of the SC method to the PC expansion is given
below:

1. Choose a set of collocation points (z j,w j), z j ∈ Γ, where z j =
(z j,1,z j,2, . . . ,z j,Ncp) is a j-th node and w j is its corresponding
weight, j = 1, . . . ,Ncp.

2. For each j = 1, . . . ,Ncp obtain the surface values g
3. Approximate the PC expansion coefficients

vk(t) = E[g(t,~ξ)Φk(~ξ)]≈
Ncp

∑
j=1

w jg(t,z j)Φk(z j). (26)

4 Copyright c© 2014 by ASME

4. Finally, construct the Nrv-variate, pth-order PC approximation
of the solution

gp(t,~ξ) =
Mp

∑
k=0

vk(t)Φk(~ξ). (27)

The same coefficients vk can be used to approximate the first
two moments of the constraint g if needed, e.g.

E[g(t,~ξ)]≈ v0(t), Var[g(t,~ξ)]≈
Mp

∑
k=1

vk(t)2. (28)

If the variance of the constraint (or the component of the solution) is
not a concern, then calculation of the coefficients {vk}

Mp
k=1 is not nec-

essary. We are interested in the PC representation only when deal-
ing with the probabilistic constraints. In this case PC representation
is used as an initial polynomial surrogate of the response surface
described by the contraint function g. The algorithm of calculating
the probability associated with a particular constraint is described
below in subsection 3.4. It is worth to mention that PC expansion
mentioned above is not the only way to obtain the needed polyno-
mial representation of the response surface. We discuss alternatives
below.

3 Large-Scale System Robust Control Framework
The robust optimization framework has two main interfaces,

one with the problem and one with the decision maker. These di-
visions allow us to better comprehend the full scope of material
covered in this paper.

3.1 Problem Interface
The problem is considered by the robust optimization frame-

work to include a black box simulation-based function, an objective
function, and a constraint function. The simulation (Sim) is

(S,∇XS,∇2
XS) = Sim(X,P), (29)

where X is an Nt by Nx matrix of control variables, P is an Nt by
Np matrix of uncertain parameters, and S is an Nt by Ns matrix of
system states. Nt is the number of time steps in the simulation, Nx
is the number of discretized control functions, Np is the number
of discretized uncertain parameter functions, and Ns is the number
of discretized state functions of interest. ∇X is the gradient with
respect to X; ∇2

X is the associated Hessian. The ∇X operator adds
one dimension of size ntnx to the data; ∇2

X adds two dimensions,
each of size NtNx.

The objective function (Obj) is

(f ,∇X f ,∇2
X f) = Obj(S,∇XS,∇2

XS), (30)

where f is the scalar objective. The constraint function (Con) is

(~g,∇X~g,∇2
X~g) = Con(S,∇XS,∇2

XS), (31)

where ~g is an Ng-length vector of constraint values. Ng is the num-
ber of constraints to be satisfied.

Equations (29)-(31) can easily be expanded to include time-
invariant control variables, parameters, and states, in addition to
those with a discretized functional form. In implementation, the
functions are assumed to calculate the derivatives only when called
for.

3.2 Decision-Maker Interface
The framework expects from the decision maker a monotonic

utility function and a vector of acceptable probabilities of failure.
The utility function (U) is

(u,∇Xu,∇2
Xu) = U(f ,∇X f ,∇2

X f) (32)

defined over the objective space. Its inverse is defined as well, as

z = U−1(u), (33)

where z is a certainty equivalent. We discuss the use of (33) in
section 3.3.

The vector of acceptable probabilities of failure ~α is an Ng-
length vector of alpha levels, one for each constraint. We discuss
probabilistic constraints in section 2.4.

3.3 Robust Objective
The following is a robust design objective defined as maximiz-

ing the certainty equivalent from (11)

max z = U−1(E[u]). (34)

Due to the monotonic nature of utility functions (in this case in-
creasing, as f (X) is a performance function, not a cost function),
this will have the same solution X (not the same objective evalua-
tion) as maximizing (10). In practice, however, it is often worth the
effort to take the utility inverse of the expected utility, in order to
optimize the certainty equivalent. If the original problem is close to
linear, or quadratic as it is in this paper, then transforming it with
the highly non-linear exponential function will severely hamper the
speed of the optimization. The inverse utility operation returns the
objective to a more well-behaved space. The inverse utility step is
accomplished as follows

z = U−1(E[u]), (35)

∇x(z) =
∇x(E[u])

dU(z)
dz

, (36)

∇
2
x(z) =

∇
2
x(E[u])−

dU2(z)
dz2 ∇x(z)T

∇x(z)

dU(z)
dz

. (37)

5 Copyright c© 2014 by ASME

3.3.1 Gradient Calculation Newton-based local search
methods use the gradient and Hessian of the objective in determin-
ing the next solution to be tested. If an analytical gradient and Hes-
sian can be calculated, or simulated together with the objective, the
number of iterations, as well as the number of simulations per it-
eration, can be greatly reduced. Conversely, many more decision
variables can by introduced. Using gradient information with the
weighted sum objective formulation in (20), however, is unknown.
Using a utility-based formulation of robust design alleviates this is-
sue.

It has already been shown that the current robust design ob-
jective formulation (20) approximates the solution given by the ex-
pected utility when the utility function has an exponential shape.
The power in using this form is the ability to utilize gradient infor-
mation from the simulation. If the new robust objective is simply
that presented in (34), then it follows that

∇x(E[u]) = E[∇x(u)], (38)

and by the chain rule

∇x(E[u]) = E
[

du
d f

∇x(f)
]
. (39)

Thus, the gradient of the expected utility is simply a function of the
performance output and its gradient. The Hessian is slightly more
complicated:

∇
2
x(E[u]) = E

[
∇x(

du
d f

∇x(f))
]
, (40)

∇
2
x(E[u]) = E

[
du
d f

∇
2
x(f)+

du2

d f 2 ∇x(f)T
∇x(f)

]
, (41)

due to the gradient being a vector. However, the Hessian of the
expected utility is still simply a function of the performance output,
its gradient, and its Hessian.

3.3.2 Uncertainty Propagation We use the full facto-
rial numerical integration (FFNI) [8] method or tensor-product
quadrature [9] for uncertainty propagation. We apply it as follows:

1. Choose a set of collocation points (z j,w j), z j ∈ Γ, where z j =
(z j,1,z j,2, . . . ,z j,Ncp) is a j-th node and w j is its corresponding
weight, j = 1, . . . ,Ncp.

2. For each j = 1, . . . ,Ncp evaluate the values of the parameter
matrix P j and run the corresponding (deterministic) simulation
(Sim), in parallel, to obtain the system states and their partial
derivatives as in (29)

(S j,∇XS j,∇
2
XS j) = Sim(X,P j). (42)

3. Evaluate the utility function and its partial derivatives by com-
bining (30) and (32).

(u j,∇Xu j,∇
2
Xu j) = U(Obj(S j,∇XS j,∇

2
XS j)). (43)

4. Determine the expected utility, along with the expected gradi-
ent and Hessian

E(u) =
Ncp

∑
j=1

w ju j, (44)

E(∇Xu) =
Ncp

∑
j=1

w j∇Xu j, (45)

E(∇2
Xu) =

Ncp

∑
j=1

w j∇
2
Xu j. (46)

5. Determine the certainty equivalent and its partial derivatives
with (35)-(37). The certainty equivalent is the robust objective
as in (34).

3.4 Probabilistic Constraints
At each iteration of the optimization, we specify an inner op-

timization problem (23) for each constraint to determine at which
point in the uncertainty space to evaluate it and its gradient.

Sampling of the original system (29)-(31) is usually expensive
so we use approximate surrogate models in the form of Polynomial
Chaos (PC) expansions, as a cheap alternative during each inner
optimization. We construct each surrogate (24) by applying (31)
to the values of S at the collocation points already calculated dur-
ing the robust objective calculation as described in section 3.3.2,
step 2. Additional work required for sampling the system beyond
the collocation points can be explained by the fact that in general
PC expansion provides a good approximation only of two statistical
moments (mean and variance). The collocation points are not al-
ways a good source of information about the behavior of the system
at the tails of the distribution, often where the constraints become
interesting. For simplicity of representation of the algorithm we
consider a single variable of interest g present in the formulation of
a probabilistic constraint,

P(g > 0)< α. (47)

The outline of the algorithm is given below.

1. Assume we have a solution g as a function of the random vector
~ξ = (ξ1,ξ2, . . . ,ξNrv) through the system uncertain parameters.

2. We assume that for a given set of collocation points {z j}
Ncp
j=1 on

a particular grid (full or sparse) we know all necessary compo-
nents of the solution at these points, including g(z j), j = 1,Ncp.

3. We build a PC representation of the constraint g of degree p,
gp, using the values calculated at {z j}

Ncp
j=1. For convenience

of notation, we denote the PC expansion and further improved
surrogate models by g̃. In general, if the failure region asso-
ciated with a given probability constraint is far from the con-
centration of mass of the joint density function of the random
vector ~ξ , extra work needs to be done to build an adequate ap-
proximation of the solution around or in the failure region.

6 Copyright c© 2014 by ASME

4. Find β = Φ−1(α), and ~ξ ∗ as a solution of the problem:
max
~ξ

g̃(~ξ) subject to ‖~ξ ∗‖= β .

5. Sample the system to get g(~ξ ∗). Update the surrogate model g̃
by accounting for the new data point (~ξ ∗,g(~ξ ∗)).

6. Repeat steps (4)-(5) as many as Nrv more times, stopping if the
difference between two subsequent ~ξ ∗ is smaller than a pre-
scribed tolerance. Among the possible modifications and im-
provements of the above algorithm are ways of estimating the
probability (e.g. SORM, sampling) and use of full or sparse
grids for the initial PC approximation. Furthermore, should
this algorithm not terminate precisely enough, refinement of
~ξ ∗ may continue by using a secondary linear surrogate near the
failure region.

4 System Model: Steady Pool Routing
The elements of the framework are demonstrated on a suf-

ficiently complex example problem, an interconnected, multiple-
reservoir hydroelectric system. The model uses pool routing, or a
discrete one-dimensional physical model, to represent the system.
The model assumes that water leaving a dam is instantaneously
available at the next dam. The model, and many of its parame-
ters, written in MATLAB, is based on a single-dam, deterministic
optimization example published by Mathworks in 2012 [10].

4.1 Defining relationships
4.1.1 Functional Form The amount of water stored s in

reservoir i at time t is

si(t) = si(0)+
∫ t

0
∆qi(u)du, (48)

where ∆qi(t) is the net flow rate into reservoir i at time t. The in-
dependent variables are the sets of functions qturb(t) and qspill(t),
representing the flow rates through the turbines and spillway, re-
spectively. The net flow can be written in terms of them

∆qi = qext,i(t)−qturb,i(t)−qspill,i(t)+ ∑
j∈Ai

(qturb, j(t)+qspill, j(t))

(49)
where Ai is the set of all dams that feed directly into reservoir i,
and qext,i(t) is the total external tributary flow into reservoir i as a
parameter. The head k at each dam is

ki(t) = c1,isi(t)+ c2,i, (50)

where c1 and c2 are the coefficients of a linear model of the ge-
ometry of reservoir i. The performance measure, total revenue R,
is

R(t) =
n

∑
i=1

∫ t

0
p(u)ki(u)qturb,i(u)du, (51)

where p(t) is the price of power.

4.1.2 Time-Discretized Form Implementation of the
model requires discretization in time. The functions from the pre-
vious section will now be turned into arrays. The volume of water
sendi, j stored in reservoir j of n at the end of time step i of m of
duration h is defined recursively

sendi, j = sendi−1, j +h∆qi, j, (52)

where ∆qi, j is the net flow rate into reservoir j during time step i.
The average volume of water stored si, j during each time step is

si, j = sendi, j −
1
2 h∆qi, j (53)

Equation (53) can be rewritten explicitly using matrices.

S = S0 +
(
L− 1

2 I
)

h∆Q, (54)

where I is the identity matrix, and L is the square lower triangular
summation matrix, with all elements on or below the main diagonal
equal to 1. S0 is a replicated row vector containing the volume of
water in each reservoir at time step i = 0, is an initial condition. ∆Q
can be broken into components

∆Q = QextAext +
(
Qturb +Qspill

)
(Aout − I). (55)

where Qturb is the flow rate through the turbines, Qspill is the flow
rate over the spillway, and Qext is the flow rate for the tributaries.
Aout is the one-directional adjacency matrix of the river network.
Each row represents a dam, and the corresponding column repre-
sents the reservoir. For example, aout1,2 = 1 means that the outflow
from dam 1 flows into the reservoir behind dam 2. Similarly, the
columns of Aext represent the reservoirs, but its rows represent the
tributaries external to the system. For example, aext2,3 = 1 means
that tributary 2 flows into the reservoir behind dam 3. Substituting
(55) into (54)

S = S0 +
(
L− 1

2 I
)

h
(
QextAext +

(
Qturb +Qspill

)
(Aout − I)

)
. (56)

The average head K is modeled

K =C1 ◦S+C2, (57)

where constants C1 and C2 parameterize a linear approximation of
the average river cross subsection in each reservoir. Consider C1
and C2 to represent row vectors replicated to have the same size as
S, in the same manner as S0. The energy produced~e is modeled

R = ~pT (K ◦Qturb)~1, (58)

where~1 is the one vector, used to sum over the columns, and ~p is
the price of energy during each time step.

7 Copyright c© 2014 by ASME

4.2 Gradient calculation
The gradient is a collection of partial derivatives with respect to

each control variable. The control variables are arranged in a three-
dimensional tensor Q, where qt,k,l is the flow at time t out of dam
k through passage l. Currently, each dam has only two passages,
turbine and spill, designated 1 and 2. Thus the gradient of S can be
constructed from (56) as follows

∂S
∂qt,k,l

= h
(
L− 1

2 I
)(∂ [qi, j,1]

∂qt,k,l
+

∂ [qi, j,2]

∂qt,k,l

)
(Aout − I), (59)

where

[qi, j,1] = Qturb, [qi, j,2] = Qspill (60)

and

∂qi, j,g

∂qt,k,l
=

{
1,

{
i j g

}
=
{

t k l
}
.

0, else
(61)

From (57)

∂K
∂qt,k,l

=C1 ◦
∂S

∂qt,k,l
. (62)

Finally, from (58), since ~p is independent of~q

∂R
∂qt,k,l

= ~pT
(

K ◦ ∂Qturb

∂qt,k,l
+Qturb ◦

∂K
∂qt,k,l

)
~1. (63)

4.3 Hessian calculation
First, due to ∂Qturb/∂qt,k,l , ∂S/∂qt,k,l and ∂K/∂qt,k,l all being

constant, their second partial derivatives are all zero. Therefore,
from (63)

∂ 2R
∂qt,k,l∂qu,v,w

=~pT
(

∂K
∂qu,v,w

◦ ∂Qturb

∂qt,k,l
+

∂Qturb

∂qu,v,w
◦ ∂K

∂qt,k,l

)
~1. (64)

Each of the two matrix terms in the above equation has at most one
non-zero element. This leads to a very fast implementation.

4.4 Constraints
Different types of the constraints are applied to the problem:

bounds on the control variables, deterministic and probabilistic in-
equality constraints, and one deterministic equality constraint. The
bounds determine the maximum turbine flow at each dam at each
time step (65). The first set of deterministic inequality constraints
defines the minimum total flow at each dam at each time step (66).
The second set of inequality constraints prescribes the maximum
change in turbine flow through each dam at each time step (67). The

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

TABLE 1. River network adjacency matrix Aout

deterministic equality constraint defines the total system storage at
the end of the simulation to some constant (68). The probabilistic
inequality constraints specify the minimum (69) and maximum (70)
storage levels at each dam at each time step. In equation form all
constraints can be represented as follows

qi, j,1 ≤ qmax turb,i, j (65)
qi, j,1 +qi, j,2 ≥ qmin total,i, j (66)

∆qi, j,1 ≤ qmaxchange,i, j (67)

∑
j

S j(T) = ∑
j

S j(0) (68)

P(S j < Smin, j)< αmin, j (69)
P(S j > Smax, j)< αmax, j. (70)

Here, T is time of the end of simulation. The deterministic con-
straints and bounds are treated in the usual way. The probabilistic
constraints are taken into account with the algorithm described in
subsection 3.4.

5 Case Study: Lower Columbia River
We solve the problem described in section 4 using two frame-

works, in order to illustrate the superiority of the framework pre-
sented in this paper. The comparison is a safety factor approach,
where a safety margin is applied to the constraints affected by un-
certainty, so that deterministic optimization on mean values may be
used.

5.1 Problem Parameters
In this study, we use dam and reservoir descriptions supplied

by BPA. Of the ten major dams administrated by BPA, we limit
this case study to the four closest to the Pacific Ocean, the Bon-
neville Dam, The Dalles Dam, the John Day Dam, and the McNary
Dam. The system under study thus comprises four reservoirs, where
the outflow from The McNary Dam enters the reservoir above the
John Day Dam, and so on. The adjacency matrices Aout and Aext
from (55) are specified in tables 1 and 2. The reservoir shape linear
regression coefficients from (50), estimated from the appropriate
reservoir storage data, are specified in table 3. We discretize time
hourly.

The model from section 4 uses steady pool routing, that is, wa-
ter discharged from a dam is assumed to be immediately available
at the next dam. Also, we approximate the storage curves (the rela-
tionship between water elevation and volume stored in a reservoir)
for each reservoir with a linear regression to further simplify the
problem.

8 Copyright c© 2014 by ASME

1 0 0 0

0 1 0 0

TABLE 2. Tributary adjacency matrix Aext

c1 c2

0.0571 68.7907

0.0403 95.8500

0.1887 76.5733

0.1000 54.2588

TABLE 3. Reservoir linear regression coefficients

We select initial conditions such that the 50-hour period be-
gins with all reservoirs half full by volume. The terminal condi-
tion included is that the expected total water stored within the four
reservoirs be equal to the initial total volume. Uncertainty is ap-
plied to a simulated inflow curve to represent inflow forecasts. The
same inflow curves are used as inflows into the reservoirs behind the
McNary Dam and John Day Dam. The lower two reservoirs are as-
sumed to not have additional tributaries. We use the same simulated
data as in [11], only scaled to better match the problem described
here. Sample price data was used from [10].

The KL expansion is truncated based on the magnitude of the
eigenvalues leaving three random variables to represent the uncer-
tainty in the inflows.

5.2 Decision Parameters
5.2.1 Probabilistic (Robust) Case The parametriza-

tion of the exponential utility function from (17) is problem spe-
cific. While values of a = 0 and b = −1 can be used regardless of
the problem, assuming risk aversion, the value of c must be deter-
mined from the decision-maker’s risk attitude toward the objective.
The following is one of many possible ways to fix c.

If a change in the objective from f1 to f2 is worth the same
increase in utility as a change in the objective from f3 to f4, given
| f2− f1|−| f4− f3| and | f2+ f1|−| f4+ f3| both have the same sign,
then c is the non-trivial solution to

ec f1 − ec f2 = ec f3 − ec f4 . (71)

For the sake of the four-dam, 50 hour example used in this
paper, suppose that an increase in revenue from 180000 to 360000
is worth the same increase in utility as an increase in revenue from
360000 to 720000. We substitute these values into (71).

For the α-levels, we specify all of them to be 0.05, correspond-
ing to a 5% acceptable probability of failure for each constraint.
Note that the constraints are not independent.

5.2.2 Deterministic (Safety Factor) Case In order to
make a fair comparison between our framework and a deterministic

Safety Factor Robust

Individual 0.1259 0.0491

0.1198 0.0479

0.1137 0.0478

0.1075 0.0471

0.1014 0.0471

0.0953 0.0459

0.0071 0.0458

0.0001 0.0335

0.0001 0.0020

0.0011

Joint 0.1259 0.0622

TABLE 4. Failure probability estimates for individual constraints most
violated, and joint failure probability estimates, for each solution

optimization, we applied a safety factor to the constraints repre-
sented in (69) and (70). These two probabilistic constraints were
re-written in safety factor form as

S j > Smin, j +ms(Smax, j−Smin, j) (72)
S j < Smax, j−ms(Smax, j−Smin, j) (73)

with a margin of safety ms = 0.05.

5.3 Comparison of Robust and Safety Factor Ap-
proaches

Both methods were run in Matlab on an 8-core desktop using
the built-in fmincon interior-point optimization algorithm. The
single-threaded safety factor optimization completed in 48 seconds,
while the parallelized robust optimization completed in 509 sec-
onds. Figure 1 shows a comparison between the two solutions of
the expected volume in each reservoir. The expected revenues of
the two solutions are 1.4372e7 for the probabilistic and 1.4295e7
for the deterministic.

Once the solutions were determined, a more accurate failure
probability for each was estimated by Monte Carlo sampling. A
sample size of 106 was simulated using each solution. Table 4 con-
tains estimated individual failure probabilities for only those con-
straints with an estimate of 104 or greater. The last row contains the
estimated joint failure probability for each solution. This clearly
shows that although the robust solution has a measurable probabil-
ity of violating more constraints, its joint probability of violating
any constraint is much lower.

Since maximizing the expected revenue and minimizing the
joint failure probability are competing objectives, the probabilistic
framework results in a solution which dominates the deterministic
one.

9 Copyright c© 2014 by ASME

FIGURE 1. Comparison of mean storage volumes between robust
(solid) and safety factor (dashed) solutions

6 CONCLUSIONS
It has been shown that the robust design objective formulation

currently in use in the literature is equivalent to the maximization
of expected utility, given an exponential utility function and normal
random variables. However, direct application of the utility func-
tion to the performance function, rather than the application of a
weighted combination of mean and variance, allows for the use of
the gradient and Hessian of the performance in the robust optimiza-
tion, and relaxes the restriction on symmetric variation.

Also, a complete framework for optimization of a robust ob-
jective with probabilistic constraints has been demonstrated. The
application of a PC surrogate to each constraint allows for hundreds
of failure probability estimations each iteration with minimal addi-
tional simulations.

A preliminary test has been done to demonstrate the viability
of the method, and its superiority to deterministic approaches.

Future work includes adding more sources of uncertainty to

the model, and using a more complete and realistic river network
model. This will test the viability of the framework on a more non-
linear problem. The model used in this case study is a substitute for
a more complete model currently in development at Oregon State
University [12]. Furthermore, due to the direct application of the
utility function to the objective, a non-exponential function may be
used, in order to remove the assumption of constant risk aversion.

REFERENCES
[1] Beyer, H.-G., and Sendhoff, B., 2007. “Robust optimization–

a comprehensive survey”. Computer methods in applied me-
chanics and engineering, 196(33), pp. 3190–3218.

[2] Chattratichat, J., Darlington, J., Pantellides, C. C., Rustem,
B., and Tanyi, B. A., 1996. “Parallel nonlinear optimisa-
tion for decision making under uncertainty”. In Proceeding
of the Sixth Parallel Computing Workshop, Kawasaki, Japan,
November, Citeseer, pp. 12–13.

[3] Resende, C. B., Heckmann, C. G., and Michalek, J. J., 2012.
“Robust design for profit maximization with aversion to down-
side risk from parametric uncertainty in consumer choice
models”. Journal of Mechanical Design, 134, p. 100901.

[4] Chen, W., 1998. “Quality utility–a compromise programming
approach to robust design”. PhD thesis, University of Illinois.

[5] Hazelrigg, G. A., 2012. Fundamentals of Decision Making for
Engineering Design and Systems Engineering.

[6] Kirkwood, C. W., 1991. Notes on attitude toward risk taking
and the exponential utility function.

[7] Du, X., Sudjianto, A., and Chen, W., 2004. “An integrated
framework for optimization under uncertainty using inverse
reliability strategy”. Journal of Mechanical Design, 126,
p. 562.

[8] Lee, S. H., and Chen, W., 2009. “A comparative study
of uncertainty propagation methods for black-box-type prob-
lems”. Structural and Multidisciplinary Optimization, 37(3),
pp. 239–253.

[9] Lee, S., Chen, W., and Kwak, B., 2009. “Robust design
with arbitrary distributions using gauss-type quadrature for-
mula”. Structural and Multidisciplinary Optimization, 39(3),
pp. 227–243.

[10] DeLand, S., 2012. Optimization of hydroelec-
tric flow with matlab. On the WWW. URL
http://www.mathworks.com/company/
newsletters/articles/optimization-
of-hydroelectric-flow-with-matlab.html.

[11] Gibson, N., Gifford-Miears, C., Leon, A. S., and Vasylkivska,
V., 2013. “Efficient computation of unsteady flow in complex
river systems with uncertain inputs”. International Journal of
Computer Mathematics(just-accepted), pp. 1–18.

[12] Leon, A. S., Kanashiro, E. A., and González-Castro, J. A.,
2013. “A fast approach for unsteady flow routing in complex
river networks based on performance graphs”. Journal of Hy-
draulic Engineering, 139(3), pp. 284–295.

10 Copyright c© 2014 by ASME

	Introduction
	Mathematical Background
	Uncertainty Quantification: the KL Transform
	Utility Theory
	Robust Design
	Inverse Reliability Analysis (Probabilistic Constraints)
	Polynomial Chaos Representation

	Large-Scale System Robust Control Framework
	Problem Interface
	Decision-Maker Interface
	Robust Objective
	Gradient Calculation
	Uncertainty Propagation

	Probabilistic Constraints

	System Model: Steady Pool Routing
	Defining relationships
	Functional Form
	Time-Discretized Form

	Gradient calculation
	Hessian calculation
	Constraints

	Case Study: Lower Columbia River
	Problem Parameters
	Decision Parameters
	Probabilistic (Robust) Case
	Deterministic (Safety Factor) Case

	Comparison of Robust and Safety Factor Approaches

	CONCLUSIONS

