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Abstract. We investigate the idea of reconstructing current densities in a magnetohydrody-
namic (MHD) generator channel from external magnetic flux density measurements in order to
determine the existence and location of damaging arcs. We model the induced fields, which are
usually neglected in low magnetic Reynold’s number flows, using a natural fixed point iteration.
Further we present a sensitivity analysis of induced fields to current density profiles in a 3D,
yet simplified model.

1. Introduction
Direct power extraction via magnetohydrodynamic (MHD) principles offers a potential step
improvement in thermal efficiencies over energy systems utilizing traditional turbomachinery [1].
This is principally due to the lack of moving parts in an MHD generator, as the temperature
limits of the moving parts tend to limit cycle temperatures in traditional combustion driven
systems. It was established that a major weakness toward commercialization of MHD power
generation was the durability of the current collectors on the walls of the generator (electrodes).
The electrodes must withstand harsh conditions, and the most damaging and perhaps most
difficult to predict phenomenon experienced in the generator was arcing. Consider the example
of an oxifuel kerosene MHD Generator with a water-cooled, copper channel. The combustion
product will be at approximately 2500 K while the channel will be kept at a temperature near
500 K. This large difference in temperature causes a thermal boundary layer to form in the
plasma, where the bulk flow will be much hotter than a thin layer near the edge of this channel.
As the plasma is thermally ionized, the conductivity will drop in this boundary layer. Large
arcs of high current density will then form near the electrodes as the current which is forced
through the electrodes will have to “jump the conductivity gap.”

In the arc state we expect the current densities in the channel to be many orders of magnitude
larger than in the diffuse state. Given these large differences in current density, the induced
magnetic fields are measurably different near the arc. Therefore properties of the current density
may be inferred via measurements of the induced fields. The idea of reconstructing current
densities from external magnetic flux density measurements has been successfully applied to fuel
cells and vacuum arc remelters [2]. The standard approach to this problem is to apply the Biot-
Savart law and solve a system of integral equations. This formulation unfortunately requires
many assumptions on the geometry and the model parameters. Instead, one can formulate
the inversion by way of a simulation-based parameter estimation. This technique requires the
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simulation of a forward problem whose inputs are parameterized explicitly. One then matches
the solution of the model to measured data by minimizing the discrepency between data and
simulation using non-linear optimization techniques in the parameter space.

It is our goal here to provide a proof of concept for inversion, via sensitivity analysis, that
current densities inside the channel of a magnetohydrodynamic generator (MHDG) can indeed
be estimated from external measurements of the induced magnetic fields. This is in comparison
to using measurements of the applied field which will most often already be known. It is worth
noting that the induced fields are expected to be significantly smaller than the applied field of
the generator, which will be a practical issue in the design of experiments.

2. Modeling
A complete description of the bulk flow of a ionized gas in the presence of a magnetic field is
governed by a coupling of the Euler Equations to the Maxwell Equations [3]. It is important to
observe that many of these parameters, e.g. electrical conductivity, can reasonably be assumed
to be constitutive and are truly dependent upon other state parameters, e.g. gas temperature.
This implies that the coupling between systems in the equations below may be stronger than is
apparent. The following system of partial differential equations can be found in [4]. We use the
convention that for a vector field f , the function

√
f · f is referred to as f .

ρ (∂t + u · ∇) u = J×B−∇p (Conservation of Momentum) (2.1a)

ρ∂tE + ρu · ∇
(u · u

2
+ U

)
= −∇ · (up)−∇ ·

(
µ−1E×B

)
(Conservation of Energy) (2.1b)

(∂t + u · ∇)ρ = −ρ∇ · u (Conservation of Mass) (2.1c)

∇× µ−1B = J (Ampere’s Law) (2.1d)
∂tB = −∇×E (Faraday’s Law) (2.1e)

J = σ(E + u×B) +
β

B
J×B (Ohm’s Law with Hall effect) (2.1f)

∇ ·B = 0 (Gauss’ Law for Magnetism) (2.1g)

where, the energy E is defined as E =
u · u

2
+ U +

εE ·E
2

+
B ·B

2µ
. Taking the divergence of

Ampere’s law gives us the continuity equation ∇·J = 0. The variables in the Hall-MHD system
are defined in Table 1.

Table 1. State variables for the Hall-MHD Model (2.1).
u plasma velocity U thermal energy of the plasma
p pressure B magnetic flux density
E electric field J current density
β Hall parameter µ magnetic permeability
σ electrical conductivity ρ plasma density

We make two assumptions which are reasonable for the applications of interest [5].

Assumption 1 : The magnetic field is the sum of applied and induced fields B = b0 +b where
the applied field b0 = (0, 0, b0)T is constant. In addition we assume that the applied field
is of much greater intensity than the induced fields, e.g. b� |b0|. The magnetic Reynolds
number (Rm ∝ µσu) is known to be much less than one, due to the low conductivity and
magnetic permeability, in the case MHD generators and is proportional to the ratio b

|b0| .

Assumption 2 : The generator is in equilibrium, namely that all time derivatives are 0. An
argument can be made that if the generator is run for a long time it will reach an equilibrium
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state. However, we have little reason to suspect that arcs are not a temporal effect. We
make this assumption as a first attempt at understanding the problem and hope to lift this
assumption in future work.

By applying these two assumptions to the above model we end up with the following system of
equations, in which η = σ−1 and where Poynting’s Theorem is used to simplify the right-hand
side of (2.1b)


ρu · ∇u−∇p = J× b0

ρu · ∇
(

u2

2 + T
)

+∇ · (up) = J · b0

∇ · (ρu) = 0
Aerostatic System (2.2)

{
∇× b = µJ
∇ · b = 0 Magnetostatic System (2.3)

{
∇× ηJ = ∇× (u× b0) + β∇× (ηJ× b0

b0
)

∇ · J = 0
Current density System (2.4)

We first note that this formulation implies a natural iterative solution technique for the problem,
namely that the Aerostatic and magnetostatic systems could each be solved separately assuming
the solutions to the others were given. One could then update J using Ohm’s law as a natural
fixed point iteration, and then repeat the larger iteration loop. Second, the two assumptions
above lead to a situation in which the induced magnetic fields respond to the system state
but do not influence it. From this standpoint, the question of whether the induced fields are
good candidates for providing observability of the current density, reduces to a question of the
sensitivity of the Magnetostatic system to different features of J. We focus on this question for
the remainder of this paper.

3. A Numerical Method for the Magnetostatic System
The magnetostatic problem is the classical div-curl system. There are a number of ways to solve
for the induced magnetic flux density given J. It follows from the Helmholtz decomposition [6]
that since b is divergence free it must be the curl of some vector potential a. We will assume
the Coulomb gauge, namely that

b = ∇× a where ∇ · a = 0. (3.1)

With this choice established we can now rewrite the magnetostatic system as the saddle point
problem: Find (a, λ) satisfying {

∇×∇× a +∇λ = µJ
∇ · a = 0 (3.2)

In this formulation we have introduced a Lagrange multiplier λ that can be interpreted as a
non-physical magnetic pressure. Since, ∇ · J = 0, assuming that J is smooth, we can show
that λ = 0 in its domain. This ensures that system (3.2) is weakly consistent with the strong
formulation of the magnetostatic problem.

We now define function spaces in which we will seek variational solutions to the saddle point
problem.

H(curl, G) = {c ∈ L2(G) : ∇× c ∈ L2(G)} (3.3)

H(div, G) = {c ∈ L2(G) : ∇ · c ∈ L2(G)} (3.4)

H1(G) = {ψ ∈ L2(G) : ∇ψ ∈ L2(G)} (3.5)

XXVI IUPAP Conference on Computational Physics (CCP2014) IOP Publishing
Journal of Physics: Conference Series 640 (2015) 012032 doi:10.1088/1742-6596/640/1/012032

3



V = {c ∈ H(curl, G) : c× n = 0 on ∂G} (3.6)

W = {ψ ∈ H1(G) : ψ = 0 on ∂G} (3.7)

We can then pose (3.2) variationally on a smooth domain G as follows

Find (a, λ) ∈ V ×W :
∫

G
∇× a · ∇ × c +

∫
G
∇λ · c =

∫
G
µJ · c∫

G
a · ∇ϕ = 0

, ∀(c, ϕ) ∈ V ×W. (3.8)

Under the assumption that J is in the dual of V, the well-posedness of the variational problem
(3.8) can be proved in the framework of the Babuska-Brezzi theory for saddle-point problems [6].
To avoid contamination of the solution due to reflections generated by Dirichlet type boundary
conditions for the field a, we will make the computational domain large enough so that our
measurements should be far from boundary effects.

3.1. Mimetic Finite Difference Method
To discretize the continuum problem we will use a Mimetic Finite Difference (MFD) method
introduced in [6]. The MFD method is, in essence, a generalization of Yee scheme type staggered
difference methods to very general geometries. While in our experiments (shown below) we have
used Cartesian grids, the nature of these methods is such that they can be easily adapted to the
more general geometries which we expect to encounter in practical meshings of a MHD generator
channel and casing.

As the details of this method can be found in [6], we will provide here only a brief overview of
the method. First consider a given mesh whose nodes we will call Th, whose edges we will call Eh
and whose faces we will call Fh. On each of these structures there is a natural association with
functions H1, H(∇×) and H(∇·) respectively. Thus on each structure we assume the following
degrees of freedom

f ∈ H1(G), fh = (f(xi) : xi ∈ Th), (3.9)

v ∈ H(curl, G), vh =
(

1
|ei|

∫
ei

τi · v : ei ∈ Eh and τi tangent to ei

)
, (3.10)

w ∈ H(div, G), wh =
(

1
|fi|

∫
fi

ni · w : fi ∈ Fh and ni normal to fi

)
. (3.11)

Given that we will be working with a lowest order method it also natural to then associate edge
and face degrees of freedom with midpoints of edges and barycenters of faces as these represent
a sufficiently accurate quadrature. We construct, for each set, a mass matrix QT ,QE ,QF which
produces an O(h) approximation of the L2 inner product for a form defined on each topology.
For example,

uh,vh ∈ Eh : vT
h QEuh ≈

∫
G

u · v +O(h). (3.12)

These matrices are constructed by producing the matrix on each cell of the discretization and
then assembling them in a standard way. One can also construct discrete operators which satisfy
analogies of the Fundamental Theorem of Calculus, Stokes Theorem, and Divergence Theorem,
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as follows

GRADh : Th → Eh,GRADhfh =
(
f(xi)− f(xj)

|ek|
: for xi,xj the endpoints of ek ∈ Eh

)
(3.13)

CURLh : Eh → Fh, CURLhvh =

 1
|fi|

∑
ej∈fi

σij |ej |v(ej) : fi ∈ Fh, σij = ±1

 . (3.14)

Given our assumptions about the continuum problem we will seek ah ∈ Eh and λh ∈ Th given
jh ∈ Eh. By accounting carefully for where the image of each differential operator lies, one can
construct a discrete system as follows[

CURLT
h QFCURLh QEGRADh

−GRADT
h QE

] [
ah

λh

]
=
[
QE jh

0

]
. (3.15)

With the discrete forward problem posed, we now describe the computation of sensitivities.

4. Sensitivity Analysis
In order to determine the viability of the response of the induced magnetic flux density to changes
in the current density we will perform a sensitivity analysis. There are number of features of
current densities which are suspected to occur in MHD Generator channels which we would like
to be able to detect.

Total Current Given that the current is extracted from the channel by the load applied across
the electrodes and will be a design parameter for the generator.

Current Density Experimental evidence from legacy MHD research suggests that the
destructive macro-arcs which form at electrodes will much denser current profiles than the
diffuse state. As our long term goal is to detect the location of the arcs inside the generator
and facilitate an understanding of their dynamics, this is perhaps the most critical parameter
for sensitivity.

Direction of Current Density It is known from earlier MHD work that the Hall effect causes
a tilt to the current density, pointing the current slightly in the direction of the fluid flow
[7]. Sensitivity to this parameter would allow one to estimate the magnitude of the Hall
effect near the sensor.

Given these three features, we have developed the following parameterized current profile

j(x, y, z; Jm, s, θ) = v
Jm√
2πs2

exp

 1
2s2

∣∣∣∣∣∣(I− vvT
)xy

z

∣∣∣∣∣∣
2 , v =

cos θ
sin θ

0

 . (4.1)

This current density is a Gaussian around the line passing through the origin pointing in the
direction (cos θ, sin θ, 0)T . The parameter Jm (A/m2) controls the total current in the system,
the parameter s (m) controls the spread of the density profile, and θ controls the tilting of the
arc due to the Hall effect. A significant feature of this formulation is that the profile is naturally
divergence free as all variation happens orthogonally to the direction the vector field is pointing.

To perform our sensitivity analysis we fix two parameters and vary the third. We compute
actual magnetic flux density values instead of derivatives in order to additionally inform the
necessary specifications of measurement equipment. We assume our domain is [−0.5, 0.5]3, the
magnetic permeability is constant and on the order of 10−6 (which is on the order of magnitude of
air at STP) and we measure the magnetic flux density at (0, 0.015, 0.015) and (.25, 0.015, 0.015).
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The center result is to estimate the magnitude of fields very close to the arc, while the short
distance away is to demonstrate the effect of measuring outside the channel near where sensors
would be placed. The sensitivity results are depicted in Figure 1. Figure 1(a) shows high
sensitivity to Jm, while Figure 1(b) shows an increasing sensitivity to s in the limit toward
smaller diameter, i.e., dense arcs. Finally, Figure 1(c) shows a significant lack of sensitivity to
angle at a short distance from the arc.
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Figure 1. Analysis of the sensitivity of the induced magnetic flux density to the three current
density parameters: Jm, s, and θ.

5. Conclusions
In this paper we have shown that the standard modeling assumptions for the bulk flow of plasma
in an MHD generator channel lead to a system in which the induced magnetic flux density
responds to the physical system state but does not influence the system. We have created a
current density profile which includes several important features of arcs which we wish to be
able to detect, namely total current, the direction of the arc, and the width of the density of
the arc. Our numerical experiments have confirmed that the magnetic flux density is sensitive
to these three features, which is a necessary condition for inversion.
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