Inverse Problems for Distributions of Parameters in PDE Systems

Prof. Nathan L. Gibson

Department of Mathematics

Reed College Mathematics Colloquium Nov 4, 2010

- Preliminaries
- Distributions

Inverse Problems

- Preliminaries
- Distributions

2 Maxwell's Equations

- Description
- Simplifications
- Discretization

Inverse Problems

- Preliminaries
- Distributions

2 Maxwell's Equations

- Description
- Simplifications
- Discretization

3 Polarization

- Description
- Random Polarization
- Polynomial Chaos

Inverse Problems

- Preliminaries
- Distributions

2 Maxwell's Equations

- Description
- Simplifications
- Discretization

3 Polarization

- Description
- Random Polarization
- Polynomial Chaos

Inverse Problem for Distribution

- Discrete Distribution Example
- Continuous Distribution Examples

Inverse Problems

- Preliminaries
- Distributions
- 2 Maxwell's Equations
 - Description
 - Simplifications
 - Discretization
- 3 Polarization
 - Description
 - Random Polarization
 - Polynomial Chaos
- Inverse Problem for Distribution
 - Discrete Distribution Example
 - Continuous Distribution Examples

$$\frac{\partial u}{\partial t} - \mathcal{A}u = f$$

where u is called a state variable, A is a linear operator depending on a set of parameters q, and f is a source term.

$$\frac{\partial u}{\partial t} - \mathcal{A}u = f$$

where u is called a state variable, A is a linear operator depending on a set of parameters q, and f is a source term.

Examples

• $\mathcal{A} = c \frac{\partial}{\partial x}$ yields a one-way wave equation.

$$\frac{\partial u}{\partial t} - \mathcal{A}u = f$$

where u is called a state variable, A is a linear operator depending on a set of parameters q, and f is a source term.

Examples

•
$$\mathcal{A} = c \frac{\partial}{\partial x}$$
 yields a one-way wave equation.
• $u = [v, w]^T$ and
 $\mathcal{A} = \begin{bmatrix} 0 & \frac{1}{\mu} \frac{\partial}{\partial x} \\ \frac{1}{\epsilon} \frac{\partial}{\partial x} & 0 \end{bmatrix}$

yields the wave equation with speed $c=\sqrt(1/\epsilon\mu).$

$$\frac{\partial u}{\partial t} - \mathcal{A}u = f$$

where u is called a state variable, A is a linear operator depending on a set of parameters q, and f is a source term.

Examples

•
$$\mathcal{A} = c \frac{\partial}{\partial x}$$
 yields a one-way wave equation.
• $u = [v, w]^T$ and
 $\mathcal{A} = \begin{bmatrix} 0 & \frac{1}{\mu} \frac{\partial}{\partial x} \\ \frac{1}{\sigma} \frac{\partial}{\partial x} & 0 \end{bmatrix}$

yields the wave equation with speed $c = \sqrt{(1/\epsilon\mu)}$. • $u = [H, E, P]^T$ and $c = \sqrt{(1/\epsilon\mu)}$

$$\mathcal{A} = \frac{1}{\tau} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 - \epsilon & c \\ 0 & \frac{\epsilon - 1}{c} & -1 \end{bmatrix} + \begin{bmatrix} 0 & \frac{1}{\mu} \frac{\partial}{\partial x} & 0 \\ \frac{1}{\epsilon} \frac{\partial}{\partial x} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

yields 1D Maxwell's equations with Debye polarization.

Prof. Gibson (OSU)

We say the "forward problem" is to find the solution to the system for some given value of the parameter set (and everything else is known).

We say the "forward problem" is to find the solution to the system for some given value of the parameter set (and everything else is known).

For all but a simple class of PDEs, this involves numerical approximations to discrete solutions

 $U_{i,j} \approx u(x_i, t_j).$

We say the "forward problem" is to find the solution to the system for some given value of the parameter set (and everything else is known).

For all but a simple class of PDEs, this involves numerical approximations to discrete solutions

$$U_{i,j} \approx u(x_i, t_j).$$

An example of a numerical method is to replace $\frac{\partial u}{\partial x}$ at (t_j, x_i) with

$$\frac{U_{i,j}-U_{i-1,j}}{\Delta x}$$

for some fixed $\Delta x = x_i - x_{i-1}$. Called a finite difference.

Inverse Problems

Definition

An inverse problem estimates quantities *indirectly* by using measurements of other quantities.

Definition

An inverse problem estimates quantities *indirectly* by using measurements of other quantities.

For example, a parameter estimation inverse problem attempts to determine values of a parameter set given (discrete) observations of (some) state variables.

In the context of Maxwell's equations:

• Estimate q using E(q) (not easily invertible)

In the context of Maxwell's equations:

- Estimate q using E(q) (not easily invertible)
- Given *real-life* data Ê, use several trial values of q to compute (simulate) several E(q) values

In the context of Maxwell's equations:

- Estimate q using E(q) (not easily invertible)
- Given *real-life* data Ê, use several trial values of q to compute (simulate) several E(q) values
- The value of q that results in an E(q) which is a "best match" to \hat{E} is likely close to the *real-life* value of q.

In the context of Maxwell's equations:

- Estimate q using E(q) (not easily invertible)
- Given *real-life* data Ê, use several trial values of q to compute (simulate) several E(q) values
- The value of q that results in an E(q) which is a "best match" to \hat{E} is likely close to the *real-life* value of q.
- Mathematically, find

$$\min_{q\in Q_{ad}} \left\| error\left(E(q), \hat{E} \right) \right\|.$$

For example, with data measured at fixed x and discrete times t_j

$$\min_{q \in Q_{ad}} \frac{1}{N} \sum_{j=1}^{N} \left(E(t_j; q) - \hat{E}_j \right)^2$$

is called the nonlinear least squares method.

In the context of Maxwell's equations:

- Estimate q using E(q) (not easily invertible)
- Given *real-life* data Ê, use several trial values of q to compute (simulate) several E(q) values
- The value of q that results in an E(q) which is a "best match" to \hat{E} is likely close to the *real-life* value of q.
- Mathematically, find

$$\min_{q \in Q_{ad}} \left\| error\left(E(q), \hat{E} \right) \right\|.$$

For example, with data measured at fixed x and discrete times t_j

$$\min_{q \in Q_{ad}} \frac{1}{N} \sum_{j=1}^{N} \left(E(t_j; q) - \hat{E}_j \right)^2$$

is called the nonlinear least squares method.

• Need a (fast) method for computing *E*.

Prof. Gibson (OSU)

In many systems, the dynamics are not completely described by a single parameter set. Often there are many different values of the parameters at work, and we only see the *average effect*.

In many systems, the dynamics are not completely described by a single parameter set. Often there are many different values of the parameters at work, and we only see the *average effect*.

To account for the effect of possible multiple parameter sets q, we define a probability distribution F(q).

In many systems, the dynamics are not completely described by a single parameter set. Often there are many different values of the parameters at work, and we only see the *average effect*.

To account for the effect of possible multiple parameter sets q, we define a probability distribution F(q).

In these cases it not sufficient to use the average value of the parameters, rather one must compute all possible solutions and take the average of those.

Example: population growth y' = -ry with $r \sim \mathcal{N}(0, 1)$.

In many systems, the dynamics are not completely described by a single parameter set. Often there are many different values of the parameters at work, and we only see the *average effect*.

To account for the effect of possible multiple parameter sets q, we define a probability distribution F(q).

In these cases it not sufficient to use the average value of the parameters, rather one must compute all possible solutions and take the average of those.

Example: population growth y' = -ry with $r \sim \mathcal{N}(0, 1)$. Expected value of solutions is given by

$$u(t,x;F) = \int_{\mathcal{Q}} \mathcal{U}(t,x;q) dF(q),$$

where Q is some admissible set and $F \in \mathfrak{P}(Q)$.

Inverse Problem for *F*

• Given data $\{\hat{E}\}_j$ we seek to determine a probability distribution F^* , such that

$$F^* = \min_{F \in \mathfrak{P}(\mathcal{Q})} \mathcal{J}(F),$$

where, for example,

$$\mathcal{J}(F) = \sum_{j} \left(E(t_j; F) - \hat{E}_j \right)^2.$$

- Given a trial distribution F_k we compute $E(t_j; F_k)$ and test $\mathcal{J}(F_k)$, then update F_{k+1} as necessary to find a minimum.
- Need either a parametrization or a discretization of *F_k* to have a finite dimensional problem.
- Need a (fast) method for computing E(x, t; F).

Inverse Problems

- Preliminaries
- Distributions

2 Maxwell's Equations

- Description
- Simplifications
- Discretization

3 Polarization

- Description
- Random Polarization
- Polynomial Chaos
- Inverse Problem for Distribution
 - Discrete Distribution Example
 - Continuous Distribution Examples

Maxwell's Equations

- Maxwell's Equations were formulated circa 1870.
- They represent a fundamental unification of electric and magnetic fields predicting electromagnetic wave phenomenon.

Maxwell's Equations

$$\begin{aligned} \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J} &= \nabla \times \mathbf{H} \quad \text{(Ampere)} \\ \frac{\partial \mathbf{B}}{\partial t} &= -\nabla \times \mathbf{E} \quad \text{(Faraday)} \\ \nabla \cdot \mathbf{D} &= \rho \quad \text{(Poisson)} \\ \nabla \cdot \mathbf{B} &= 0 \quad \text{(Gauss)} \end{aligned}$$

- **E** = Electric field vector
- **H** = Magnetic field vector
- $\rho =$ Electric charge density
- **D** = Electric displacement
- **B** = Magnetic flux density
 - J = Current density

Note: Need initial conditions and boundary conditions.

Prof. Gibson (OSU)

Maxwell's equations are completed by constitutive laws that describe the response of the medium to the electromagnetic field.

$$\begin{aligned} \mathbf{D} &= \epsilon \mathbf{E} + \mathbf{P} \\ \mathbf{B} &= \mu \mathbf{H} + \mathbf{M} \\ \mathbf{J} &= \sigma \mathbf{E} + \mathbf{J}_s \end{aligned}$$

- **P** = Polarization $\epsilon =$ Electric permittivity

- M = Magnetization $\mu = Magnetic permeability$
- $J_s =$ Source Current $\sigma =$ Electric Conductivity

Linear, Isotropic, Non-dispersive and Non-conductive media

Assume no material dispersion, i.e., speed of propagation is not frequency dependent.

$$\begin{array}{rcl} \mathbf{D} &=& \epsilon \mathbf{E} \\ \mathbf{B} &=& \mu \mathbf{H} \end{array}$$

$$\epsilon = \epsilon_0 \epsilon_r$$
 $\epsilon_r =$ Relative Permittivity
 $\mu = \mu_0 \mu_r$ $\mu_r =$ Relative Permeability

Maxwell's Equations in One Space Dimension

• The time evolution of the fields is thus completely specified by the curl equations

$$\epsilon \frac{\partial \mathbf{E}}{\partial t} = \nabla \times \mathbf{H}$$
$$\mu \frac{\partial \mathbf{H}}{\partial t} = -\nabla \times \mathbf{E}$$

• Assuming that the electric field is polarized to oscillate only in the y direction, propagate in the x direction, and there is uniformity in the z direction:

Equations involving E_y and H_z .

In 1966 Kane Yee originated a set of finite-difference equations for the time dependent Maxwell's curl equations (finite difference time domain or FDTD)

- **Staggered Grids**: Choose *E* components on integer points in space and time, and *H* components on the half-grids in both variables.
- Idea: First order derivatives are much more accurately evaluated on staggered grids, such that if a variable is located on the integer grid, its first derivative is best evaluated on the half-grid and vice-versa.

Yee Scheme in One Space Dimension

- This method is an explicit second order scheme in both space and time.
- It is conditionally stable with the CFL condition

$$u = \frac{c\Delta t}{\Delta x} \le 1$$

where ν is called the Courant number and $c = 1/\sqrt{\epsilon\mu}$.

Numerical Stability: A Square Wave

Numerical Dispersion: A Square Wave

Prof. Gibson (OSU)

Polarization

Outline

- Inverse Problems
 - Preliminaries
 - Distributions
- 2 Maxwell's Equations
 - Description
 - Simplifications
 - Discretization

3 Polarization

- Description
- Random Polarization
- Polynomial Chaos
- Inverse Problem for Distribution
 - Discrete Distribution Example
 - Continuous Distribution Examples
Recall

$\mathbf{D} = \epsilon \mathbf{E} + \mathbf{P}$

where ${\boldsymbol{\mathsf{P}}}$ is the dielectric polarization.

• Debye model

$$\tau \dot{\mathbf{P}} + \mathbf{P} = \epsilon_0 (\epsilon_s - \epsilon_\infty) \mathbf{E}$$

where $q = \{\epsilon_{\infty}, \epsilon_s, \tau\}$ and, in particular, τ is called the relaxation time.

• Converting to frequency domain via Fourier transforms

$$\mathbf{D} = \epsilon \mathbf{E} + \mathbf{P}$$

becomes

$$\hat{\mathbf{D}} = \epsilon(\omega)\hat{\mathbf{E}}$$

where $\epsilon(\omega)$ is called the complex permittivity.

• Debye model gives

$$\epsilon(\omega) = \epsilon_{\infty} + \frac{\epsilon_s - \epsilon_{\infty}}{1 + i\omega\tau}$$

• Cole-Cole model (heuristic generalization)

$$\epsilon(\omega) = \epsilon_{\infty} + \frac{\epsilon_{s} - \epsilon_{\infty}}{1 + (i\omega\tau)^{1-\alpha}}$$

Unfortunately, the Cole-Cole model corresponds to a fractional order differential equation in the time domain, and simulation is not straight-forward.

Prof. Gibson (OSU)

Figure: Real part of $\epsilon(\omega)$, ϵ , or the permittivity.

Figure: Imaginary part of $\epsilon(\omega)$, σ , or the conductivity.

- The Cole-Cole model corresponds to a fractional order ODE in the time-domain and is difficult to simulate.
- Debye is efficient to simulate, but does not represent permittivity well.
- Better fits to data are obtained by taking linear combinations of Debye models (multi-pole Debye), idea comes from the known existence of multiple physical mechanisms.
- An alternative approach is to consider the Debye model but with a (continuous) distribution of relaxation times.
- Empirical measurements suggest a log-normal distribution.

Figure: Real part of $\epsilon(\omega)$, called simply ϵ , or the permittivity. Model A refers to the Debye model with a uniform distribution on τ .

We define the random polarization $\mathcal{P}(x, t; \tau)$ to be the solution to

$$\tau \dot{\mathcal{P}} + \mathcal{P} = \epsilon_0 (\epsilon_s - \epsilon_\infty) E$$

where τ is a random variable with PDF $f(\tau)$, for example,

$$f(\tau) = \frac{1}{\tau_b - \tau_a}$$

for a uniform distribution.

We define the random polarization $\mathcal{P}(x, t; \tau)$ to be the solution to

$$au \dot{\mathcal{P}} + \mathcal{P} = \epsilon_0 (\epsilon_s - \epsilon_\infty) E$$

where τ is a random variable with PDF $f(\tau)$, for example,

$$f(\tau) = \frac{1}{\tau_b - \tau_a}$$

for a uniform distribution.

The electric field depends on the macroscopic polarization, which we take to be the expected value of the random polarization at each point (x, t)

$$P(x,t;F) = \int_{\tau_a}^{\tau_b} \mathcal{P}(x,t;\tau)f(\tau)d\tau.$$

Numerical Approximation of Random Polarization

Recall, to solve the inverse problem for the distribution of relaxation times, we need a method of accurately and efficiently simulating P(x, t; F).

Numerical Approximation of Random Polarization

Recall, to solve the inverse problem for the distribution of relaxation times, we need a method of accurately and efficiently simulating P(x, t; F).

• Could apply a quadrature rule to the integral in the expected value. Results in a linear combination of individual Debye solves.

Numerical Approximation of Random Polarization

Recall, to solve the inverse problem for the distribution of relaxation times, we need a method of accurately and efficiently simulating P(x, t; F).

- Could apply a quadrature rule to the integral in the expected value. Results in a linear combination of individual Debye solves.
- Alternatively, we can use a method which separates the time derivative from the randomness and applies a truncated expansion in random space, called Polynomial Chaos. Results in a linear system.

Polynomial Chaos: Simple example

Consider the first order, constant coefficient, linear ODE

$$\dot{y} = -ky, \quad k = k(\xi) = \xi, \quad \xi \sim \mathcal{N}(0,1).$$

We apply a Polynomial Chaos expansion in terms of orthogonal Hermite polynomials H_i to the solution y:

$$y(t,\xi) = \sum_{j=0}^{\infty} \alpha_j(t)\phi_j(\xi), \quad \phi_j(\xi) = H_j(\xi)$$

then the ODE becomes

$$\sum_{j=0}^{\infty} \dot{\alpha}_j(t) \phi_j(\xi) = -\sum_{j=0}^{\infty} \alpha_j(t) \xi \phi_j(\xi),$$

Triple recursion formula

$$\sum_{j=0}^{\infty} \dot{\alpha}_j(t) \phi_j(\xi) = -\sum_{j=0}^{\infty} \alpha_j(t) \xi \phi_j(\xi),$$

We can eliminate the explicit dependence on ξ by using the triple recursion formula for Hermite polynomials

$$\xi H_j = jH_{j-1} + H_{j+1}.$$

Thus

$$\sum_{j=0}^{\infty} \dot{\alpha}_j(t)\phi_j + \alpha_j(t)(j\phi_{j-1} + \phi_{j+1}) = 0.$$

Galerkin Projection onto span($\{\phi_i\}_{i=0}^p$)

Taking the weighted inner product with each basis gives

$$\sum_{j=0}^{\infty} \dot{\alpha}_j(t) \langle \phi_j, \phi_i \rangle_W + \alpha_j(t) (j \langle \phi_{j-1}, \phi_i \rangle_W + \langle \phi_{j+1}, \phi_i \rangle_W) = 0,$$

$$i = 0, \dots, p.$$

Where

$$\langle f(\xi), g(\xi) \rangle_W = \int f(\xi)g(\xi)W(\xi)d\xi.$$

Galerkin Projection onto span($\{\phi_i\}_{i=0}^p$)

Taking the weighted inner product with each basis gives

$$\sum_{j=0}^{\infty} \dot{\alpha}_j(t) \langle \phi_j, \phi_i \rangle_W + \alpha_j(t) (j \langle \phi_{j-1}, \phi_i \rangle_W + \langle \phi_{j+1}, \phi_i \rangle_W) = 0,$$

$$i = 0, \dots, p.$$

Where

$$\langle f(\xi), g(\xi) \rangle_W = \int f(\xi)g(\xi)W(\xi)d\xi.$$

Using orthogonality, $\langle \phi_j, \phi_i \rangle_W = \langle \phi_i, \phi_i \rangle_W \delta_{ij}$, we have

 $\dot{\alpha}_i \langle \phi_i, \phi_i \rangle_W + (i+1)\alpha_{i+1} \langle \phi_i, \phi_i \rangle_W + \alpha_{i-1} \langle \phi_i, \phi_i \rangle_W = 0, \quad i = 0, \dots, p,$

Deterministic ODE system

Letting $\vec{\alpha}$ represent the vector containing $\alpha_0(t), \ldots, \alpha_p(t)$ (and assuming $\alpha_{p+1}(t)$, etc. are identically zero) the system of ODEs can be written

$$\dot{\vec{\alpha}} + M\vec{\alpha} = \vec{0},$$

with

$$M = \begin{bmatrix} 0 & 1 & & \\ 1 & 0 & 2 & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & p \\ & & & 1 & 0 \end{bmatrix}$$

The mean value of $y(t,\xi)$ is $\alpha_0(t)$.

For any choice of family of orthogonal polynomials, there exists a triple recursion formula. Given the arbitrary relation

$$\xi\phi_j = a_j\phi_{j-1} + b_j\phi_j + c_j\phi_{j+1}$$

(with $\phi_{-1} = 0$) then the matrix above becomes

$$M = \begin{bmatrix} b_0 & a_1 & & \\ c_0 & b_1 & a_2 & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & a_p \\ & & & c_{p-1} & b_p \end{bmatrix}$$

Consider the non-homogeneous ODE

$$\dot{y} + ky = g(t), \quad k = k(\xi) = \sigma\xi + \mu, \quad \xi \sim \mathcal{N}(0, 1).$$

then

$$\dot{\alpha}_i + \sigma \left[(i+1)\alpha_{i+1} + \alpha_{i-1} \right] + \mu \alpha_i = g(t)\delta_{0i}, \quad i = 0, \dots, p,$$

or the deterministic ODE system

$$\dot{\vec{\alpha}} + (\sigma M + \mu I)\vec{\alpha} = g(t)\vec{e_1}.$$

- Any set of orthogonal polynomials can be used in the truncated expansion, but there may be an optimal choice.
- If the polynomials are orthogonal with respect to weighting function f(ξ), and k has PDF f(k), then it is known that the PC solution converges exponentially in terms of p.
- In practice, approximately 4 are generally sufficient.

Figure: Solution of each mode with Gaussian random coefficient by fourth-order Hermitian-chaos.

Figure: Convergence of error with Gaussian random coefficient by fourth-order Hermitian-chaos.

Prof. Gibson (OSU

Generalized Polynomial Chaos

Table: Popular distributions and corresponding orthogonal polynomials.

Distribution	Polynomial	Support
Gaussian	Hermite	$(-\infty,\infty)$
gamma	Laguerre	$[0,\infty)$
beta	Jacobi	[a, b]
uniform	Legendre	[a, b]

Note: lognormal random variables may be handled as a non-linear function (e.g., Taylor expansion) of a normal random variable.

We can apply Polynomial Chaos method to our random polarization

$$au\dot{\mathcal{P}} + \mathcal{P} = \epsilon_0(\epsilon_s - \epsilon_\infty)E, \quad au = au(\xi) = r\xi + r$$

resulting in

$$(rM + mI)\dot{\vec{\alpha}} + \vec{\alpha} = \epsilon_0(\epsilon_s - \epsilon_\infty)E\vec{e_1} =: \vec{g}$$

or

$$A\dot{\vec{\alpha}} + \vec{\alpha} = \vec{g}.$$

We can apply Polynomial Chaos method to our random polarization

$$au\dot{\mathcal{P}} + \mathcal{P} = \epsilon_0(\epsilon_s - \epsilon_\infty)E, \quad au = au(\xi) = r\xi + r$$

resulting in

$$(rM + mI)\dot{\vec{\alpha}} + \vec{\alpha} = \epsilon_0(\epsilon_s - \epsilon_\infty)E\vec{e_1} =: \vec{g}$$

or

$$A\vec{\alpha} + \vec{\alpha} = \vec{g}.$$

The macroscopic polarization, the expected value of the random polarization at each point (t, x), is simply

$$P(t,x;F) = \alpha_0(t,x).$$

Applying the central difference approximation, based on the Yee scheme, Maxwell's equations with conductivity and polarization included

$$\epsilon \frac{\partial E}{\partial t} = -\frac{\partial H}{\partial z} - \sigma E - \frac{\partial P}{\partial t}$$

and

$$\mu \frac{\partial H}{\partial t} = -\frac{\partial E}{\partial z}$$

become

$$\begin{split} \frac{E_k^{n+\frac{1}{2}} - E_k^{n-\frac{1}{2}}}{\Delta t} &= -\frac{1}{\epsilon} \frac{H_{k+\frac{1}{2}}^n - H_{k-\frac{1}{2}}^n}{\Delta z} - \frac{\sigma}{\epsilon} \frac{E_k^{n+\frac{1}{2}} + E_k^{n-\frac{1}{2}}}{2} - \frac{1}{\epsilon} \frac{P_k^{n+\frac{1}{2}} - P_k^{n-\frac{1}{2}}}{\Delta t} \\ \text{and} \\ \frac{H_{k+\frac{1}{2}}^{n+\frac{1}{2}} - H_{k+\frac{1}{2}}^n}{\Delta t} = -\frac{1}{\mu} \frac{E_{k+1}^{n+\frac{1}{2}} - E_k^{n+\frac{1}{2}}}{\Delta z}. \end{split}$$

Note that while the electric field and magnetic field are staggered in time, the polarization updates simultaneously with the electric field.

Prof. Gibson (OSU)

Need a similar approach for discretizing the PC system

$$A\vec{\alpha} + \vec{\alpha} = \vec{g}.$$

Applying second order central differences, as before, to $\vec{\alpha} = \vec{\alpha}(z_k)$:

$$A\frac{\vec{\alpha}^{n+\frac{1}{2}}-\vec{\alpha}^{n-\frac{1}{2}}}{\Delta t}+\frac{\vec{\alpha}^{n+\frac{1}{2}}+\vec{\alpha}^{n-\frac{1}{2}}}{2}=\frac{\vec{g}^{n+\frac{1}{2}}+\vec{g}^{n-\frac{1}{2}}}{2}.$$

Combining like terms gives

$$(2A + \Delta tI)\vec{\alpha}^{n+\frac{1}{2}} = (2A - \Delta tI)\vec{\alpha}^{n-\frac{1}{2}} + \Delta t\left(\vec{g}^{n+\frac{1}{2}} + \vec{g}^{n-\frac{1}{2}}\right)$$

Note that we first solve the discrete electric field equation for $E_k^{n+\frac{1}{2}}$ and plug in here (in $\vec{g}^{n+\frac{1}{2}}$) to update $\vec{\alpha}$.

Comments on Polynomial Chaos

- Gives a simple and efficient method to simulate systems involving distributions of parameters.
- Works equally well in three spatial dimensions.
- Limitation: choice of polynomials depends on type of distribution.
- Need error estimates to be sure that a sufficient number of polynomials is used in the expansion.

Outline

- Inverse Problems
 - Preliminaries
 - Distributions
- 2 Maxwell's Equations
 - Description
 - Simplifications
 - Discretization
- 3 Polarization
 - Description
 - Random Polarization
 - Polynomial Chaos

Inverse Problem for Distribution

- Discrete Distribution Example
- Continuous Distribution Examples

Inverse Problem for RTD

Now that we have a numerical method for simulating Maxwell's equations with random polarization

$$P(x,t;F) = \int_{\tau_a}^{\tau_b} \mathcal{P}(x,t;\tau) dF(\tau)$$

we address the inverse problem for the relaxation time distribution F.

• Given data $\{\hat{E}\}_j$ we seek to determine a probability distribution F^* , such that

$$F^* = \min_{F \in \mathfrak{P}(\mathcal{Q})} \mathcal{J}(F),$$

where

$$\mathcal{J}(F) = \sum_{j} k \left(E(t_j; F) - \hat{E}_j \right)^2.$$

Discrete Distribution Example

- Mixture of two Debye materials with au_1 and au_2
- Total polarization a weighted average

$$P = \alpha_1 P_1(\tau_1) + \alpha_2 P_2(\tau_2)$$

• Corresponds to the discrete probability distribution

$$dF(\tau) = [\alpha_1 \delta(\tau_1) + \alpha_2 \delta(\tau_2)] d\tau$$

Discrete Distribution Inverse Problem

- Assume the proportions α_1 and $\alpha_2 = 1 \alpha_1$ are known.
- Define the following least squares optimization problem:

$$\min_{(\tau_1,\tau_2)} \mathcal{J} = \min_{(\tau_1,\tau_2)} \sum_j \left| E(t_j, 0; (\tau_1, \tau_2)) - \hat{E}_j \right|^2,$$

where \hat{E}_j is synthetic data generated using (τ_1^*, τ_2^*) in our simulation routine.

Discrete Distribution J using 10⁶Hz

The solid line above the surface represents the curve of constant $\tilde{\tau} := \alpha_1 \tau_1 + (1 - \alpha_1) \tau_2$. Note: $\omega \tilde{\tau} \approx .15 < 1$.

Prof. Gibson (OSL

Inverse Problems for Distributions

Inverse Problem Results 10⁶Hz

	$ au_1$	$ au_2$	$ ilde{ au}$
Initial	3.95000e-8	1.26400e-8	2.60700e-8
LM	3.19001e-8	1.55032e-8	2.37016e-8
Final	3.16039e-8	1.55744e-8	2.37016e-8
Exact	3.16000e-8	1.58000e-8	2.37000e-8

- Levenberg-Marquardt converges to curve of constant $\tilde{\tau}$
- Traversing curve results in accurate final estimates

Discrete Distribution J using 10^{11} Hz

The solid line above the surface represents the curve of constant $\tilde{\lambda} := \frac{1}{c\tilde{\tau}} = \frac{\alpha_1}{c\tau_1} + \frac{\alpha_2}{c\tau_2}$. Note: $\omega \tilde{\tau} \approx 15000 > 1$.

Prof. Gibson (OSU

Inverse Problems for Distributions

Inverse Problem Results 10¹¹Hz

	τ_1	$ au_2$	$ ilde{\lambda}$
Initial	3.95000e-8	1.26400e-8	0.174167
LM	4.08413e-8	1.41942e-8	0.158333
Final	3.16038e-8	1.57991e-8	0.158333
Exact	3.16000e-8	1.58000e-8	0.158333

- Levenberg-Marquardt converges to curve of constant $\hat{\lambda}$
- Traversing curve results in accurate final estimates

Log-Normal Distribution of τ

• Gaussian distribution of log(τ) with mean μ and with standard deviation σ :

$$dF(\tau;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \frac{1}{\ln 10} \frac{1}{\tau} \exp\left(-\frac{(\log \tau - \mu)^2}{2\sigma^2}\right) d\tau,$$

• Corresponding inverse problem:

$$\min_{q=(\mu,\sigma)}\sum_{j}\left|E(t_{j},0;(\mu,\sigma))-\hat{E}_{j}\right|^{2}.$$

Shown are the initial density function, the minimizing density function and the true density function (the latter two being practically identical).

Prof. Gibson (OSU)

Bi-Gaussian Distribution of $\log \tau$

• Bi-Gaussian distribution with means μ_1 and μ_2 and with standard deviations σ_1 and σ_2 :

$$dF(\tau) = \alpha_1 d\hat{F}(\tau; \mu_1, \sigma_1) + (1 - \alpha_1) d\hat{F}(\tau; \mu_2, \sigma_2),$$

where

$$d\hat{F}(\tau;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \frac{1}{\ln 10} \frac{1}{\tau} \exp\left(-\frac{(\log \tau - \mu)^2}{2\sigma^2}\right) d\tau,$$

• Corresponding inverse problem:

$$\min_{q=(\mu_1,\sigma_1,\mu_2,\sigma_2)}\sum_j \left||E(t_j,0;q)|-|\hat{E}_j|\right|^2.$$

Bi-Gaussian Results with 10⁶*Hz*

case	μ_1	σ_1	μ_2	σ_2	$ ilde{ au}$
Initial	1.58001e-7	0.036606	3.16002e-9	0.0571969	8.1201e-8
μ_1,μ_2	4.27129e-8	0.036606	4.24844e-9	0.0571969	2.36499e-8
Final	3.09079e-8	0.0136811	1.63897e-8	0.0663628	2.37978e-8
Exact	3.16000e-8	0.0457575	1.58000e-8	0.0457575	2.37957e-8

- \bullet Levenberg-Marquardt converges to curve of constant $\tilde{\tau}$
- Traversing curve results in reasonable final estimates for μ_k but worse for σ_k .

Note: for this continuous distribution,

$$ilde{ au} = \int_{\mathcal{T}} au dF(au).$$

Bi-Gaussian Results with 10¹¹Hz

case	μ_1	σ_1	μ_2	σ_2	$\tilde{\lambda}$
Initial	1.58001e-7	0.036606	3.16002e-9	0.0571969	0.538786
μ_1 , μ_2	1.58001e-7	0.036606	1.12595e-8	0.0571969	0.158863
Final	3.23914e-8	0.0366059	1.56020e-8	0.0571968	0.158863
Exact	3.16000e-8	0.0457575	1.58000e-8	0.0457575	0.158863

- Levenberg-Marquardt converges to curve of constant $\tilde{\lambda}$
- Traversing curve results in reasonable final estimates for μ_k but no change in σ_k .

Note: for this continuous distribution,

$$\tilde{\lambda} = \int_{\mathcal{T}} \frac{1}{c\tau} dF(\tau).$$

Comments on Time-domain Inverse Problems

- Our estimation methods worked well for discrete distributions
- Our estimation methods worked well for the continuous uniform distribution and Gaussian distributions
- We are currently only able to determine the means in the bi-Gaussian distributions, this data is relatively insensitive to the standard deviations