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Inverse Problems Preliminaries

A General First Order Linear PDE System

∂u

∂t
−Au = f

where u is called a state variable, A is a linear operator depending on a set
of parameters q, and f is a source term.

Examples

A = c ∂
∂x yields a one-way wave equation.

u = [v ,w ]T and

A =

[
0 1

µ
∂
∂x

1
ε

∂
∂x 0

]
yields the wave equation with speed c =

√
(1/εµ).

u = [H,E ,P]T and c =
√

(1/εµ)

A =
1

τ

0 0 0
0 1− ε c
0 ε−1

c −1

 +

 0 1
µ

∂
∂x 0

1
ε

∂
∂x 0 0
0 0 0


yields 1D Maxwell’s equations with Debye polarization.
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Inverse Problems Preliminaries

Forward Problem

We say the “forward problem” is to find the solution to the system for
some given value of the parameter set (and everything else is known).

For all but a simple class of PDEs, this involves numerical approximations
to discrete solutions

Ui ,j ≈ u(xi , tj).

An example of a numerical method is to replace ∂u
∂x at (tj , xi ) with

Ui ,j − Ui−1,j

∆x

for some fixed ∆x = xi − xi−1. Called a finite difference.
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Inverse Problems Preliminaries

Inverse Problems

Definition

An inverse problem estimates quantities indirectly by using measurements
of other quantities.

For example, a parameter estimation inverse problem attempts to
determine values of a parameter set given (discrete) observations of
(some) state variables.
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Inverse Problems Preliminaries

Parameter Identification

In the context of Maxwell’s equations:

Estimate q using E (q) (not easily invertible)

Given real-life data Ê , use several trial values of q to compute
(simulate) several E (q) values

The value of q that results in an E (q) which is a “best match” to Ê
is likely close to the real-life value of q.

Mathematically, find

min
q∈Qad

∥∥∥error
(
E (q), Ê

)∥∥∥ .

For example, with data measured at fixed x and discrete times tj

min
q∈Qad

1

N

N∑
j=1

(
E (tj ; q)− Êj

)2

is called the nonlinear least squares method.

Need a (fast) method for computing E .
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Inverse Problems Distributions

Distributions of Parameters

In many systems, the dynamics are not completely described by a single
parameter set. Often there are many different values of the parameters at
work, and we only see the average effect.

To account for the effect of possible multiple parameter sets q, we define a
probability distribution F (q).
In these cases it not sufficient to use the average value of the parameters,
rather one must compute all possible solutions and take the average of
those.
Example: population growth y ′ = −ry with r ∼ N (0, 1).
Expected value of solutions is given by

u(t, x ;F ) =

∫
Q
U(t, x ; q)dF (q),

where Q is some admissible set and F ∈ P(Q).
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Inverse Problems Distributions

Inverse Problem for F

Given data {Ê}j we seek to determine a probability distribution F ∗,
such that

F ∗ = min
F∈P(Q)

J (F ),

where, for example,

J (F ) =
∑

j

(
E (tj ;F )− Êj

)2
.

Given a trial distribution Fk we compute E (tj ;Fk) and test J (Fk),
then update Fk+1 as necessary to find a minimum.

Need either a parametrization or a discretization of Fk to have a finite
dimensional problem.

Need a (fast) method for computing E (x , t;F ).
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Maxwell’s Equations Description

Maxwell’s Equations

Maxwell’s Equations were

formulated circa 1870.

They represent a fundamental

unification of electric and

magnetic fields predicting

electromagnetic wave

phenomenon.
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Maxwell’s Equations Description

Maxwell’s Equations

∂D

∂t
+ J = ∇×H (Ampere)

∂B

∂t
= −∇× E (Faraday)

∇ ·D = ρ (Poisson)

∇ · B = 0 (Gauss)

E = Electric field vector

H = Magnetic field vector

ρ = Electric charge density

D = Electric displacement

B = Magnetic flux density

J = Current density

Note: Need initial conditions and boundary conditions.
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Maxwell’s Equations Description

Constitutive Laws

Maxwell’s equations are completed by constitutive laws that describe the
response of the medium to the electromagnetic field.

D = εE + P

B = µH + M

J = σE + Js

P = Polarization

M = Magnetization

Js = Source Current

ε = Electric permittivity

µ = Magnetic permeability

σ = Electric Conductivity
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Maxwell’s Equations Simplifications

Linear, Isotropic, Non-dispersive and Non-conductive media

Assume no material dispersion, i.e., speed of propagation is not frequency
dependent.

D = εE

B = µH

ε = ε0εr

µ = µ0µr

εr = Relative Permittivity

µr = Relative Permeability
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Maxwell’s Equations Simplifications

Maxwell’s Equations in One Space Dimension

The time evolution of the fields is thus completely specified by the
curl equations

ε
∂E

∂t
= ∇×H

µ
∂H

∂t
= −∇× E

Assuming that the electric field is polarized to oscillate only in the y
direction, propagate in the x direction, and there is uniformity in the
z direction:

Equations involving Ey and Hz .

ε
∂Ey

∂t
= −∂Hz

∂x

µ
∂Hz

∂t
= −∂Ey

∂x
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Maxwell’s Equations Discretization

The Yee Scheme

In 1966 Kane Yee originated a set of finite-difference equations for the
time dependent Maxwell’s curl equations (finite difference time domain
or FDTD)

Staggered Grids: Choose E components on integer points in space
and time, and H components on the half-grids in both variables.

Idea:First order derivatives are much more accurately evaluated on
staggered grids, such that if a variable is located on the integer grid,
its first derivative is best evaluated on the half-grid and vice-versa.
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Maxwell’s Equations Discretization

Yee Scheme in One Space Dimension

Hz |
n+ 1

2

r+ 1
2

− Hz |
n− 1

2

r+ 1
2

∆t
= − 1

µ

Ey |nr+1 − Ey |nr
∆x

Ey |n+1
r − Ey |nr

∆t
= −1

ε

Hz |
n+ 1

2

r+ 1
2

− Hz |
n+ 1

2

r− 1
2

∆x

This method is an explicit second order scheme in both space and
time.

It is conditionally stable with the CFL condition

ν =
c∆t

∆x
≤ 1

where ν is called the Courant number and c = 1/
√

εµ.
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Maxwell’s Equations Discretization

Numerical Stability: A Square Wave

Case c∆t = ∆x

−1 −0.5 0 0.5 1

0

0.5

1

x

E

t=0 t=100 ∆ t t=200 ∆ t

Case c∆t > ∆x

−1 −0.5 0 0.5 1
−2

−1

0

1

2

3

x

E

t =0

t =18 ∆ t
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Maxwell’s Equations Discretization

Numerical Dispersion: A Square Wave

Case c∆t = ∆x

−1 −0.5 0 0.5 1

0

0.5

1

x

E

t=0 t=100 ∆ t t=200 ∆ t

Case c∆t < ∆x

−1 −0.5 0 0.5 1

0

0.5

1

x

E

t=0 t=100 ∆ t

t=200 ∆ t
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Polarization Description

Dispersive Dielectrics

Recall
D = εE + P

where P is the dielectric polarization.

Debye model
τ Ṗ + P = ε0(εs − ε∞)E

where q = {ε∞, εs , τ} and, in particular, τ is called the relaxation
time.
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Polarization Description

Frequency Domain

Converting to frequency domain via Fourier transforms

D = εE + P

becomes
D̂ = ε(ω)Ê

where ε(ω) is called the complex permittivity.

Debye model gives

ε(ω) = ε∞ +
εs − ε∞
1 + iωτ

Cole-Cole model (heuristic generalization)

ε(ω) = ε∞ +
εs − ε∞

1 + (iωτ)1−α

Unfortunately, the Cole-Cole model corresponds to a fractional order
differential equation in the time domain, and simulation is not
straight-forward.
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Polarization Dry Skin Data
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Figure: Real part of ε(ω), ε, or the permittivity.
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Figure: Imaginary part of ε(ω), σ, or the conductivity.
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Polarization Motivation

Motivation

The Cole-Cole model corresponds to a fractional order ODE in the
time-domain and is difficult to simulate.

Debye is efficient to simulate, but does not represent permittivity well.

Better fits to data are obtained by taking linear combinations of
Debye models (multi-pole Debye), idea comes from the known
existence of multiple physical mechanisms.

An alternative approach is to consider the Debye model but with a
(continuous) distribution of relaxation times.

Empirical measurements suggest a log-normal distribution.
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Polarization Fit to Dry Skin Data
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Figure: Real part of ε(ω), called simply ε, or the permittivity. Model A refers to
the Debye model with a uniform distribution on τ .
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Polarization Random Polarization

Random Polarization

We define the random polarization P(x , t; τ) to be the solution to

τ Ṗ + P = ε0(εs − ε∞)E

where τ is a random variable with PDF f (τ), for example,

f (τ) =
1

τb − τa

for a uniform distribution.

The electric field depends on the macroscopic polarization, which we take
to be the expected value of the random polarization at each point (x , t)

P(x , t;F ) =

∫ τb

τa

P(x , t; τ)f (τ)dτ.
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Polarization Random Polarization

Numerical Approximation of Random Polarization

Recall, to solve the inverse problem for the distribution of relaxation times,
we need a method of accurately and efficiently simulating P(x , t;F ).

Could apply a quadrature rule to the integral in the expected value.
Results in a linear combination of individual Debye solves.

Alternatively, we can use a method which separates the time
derivative from the randomness and applies a truncated expansion in
random space, called Polynomial Chaos. Results in a linear system.
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Polarization Polynomial Chaos

Polynomial Chaos: Simple example

Consider the first order, constant coefficient, linear ODE

ẏ = −ky , k = k(ξ) = ξ, ξ ∼ N (0, 1).

We apply a Polynomial Chaos expansion in terms of orthogonal Hermite
polynomials Hj to the solution y :

y(t, ξ) =
∞∑
j=0

αj(t)φj(ξ), φj(ξ) = Hj(ξ)

then the ODE becomes

∞∑
j=0

α̇j(t)φj(ξ) = −
∞∑
j=0

αj(t)ξφj(ξ),
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Polarization Polynomial Chaos

Triple recursion formula

∞∑
j=0

α̇j(t)φj(ξ) = −
∞∑
j=0

αj(t)ξφj(ξ),

We can eliminate the explicit dependence on ξ by using the triple recursion
formula for Hermite polynomials

ξHj = jHj−1 + Hj+1.

Thus
∞∑
j=0

α̇j(t)φj + αj(t)(jφj−1 + φj+1) = 0.
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Polarization Polynomial Chaos

Galerkin Projection onto span({φi}p
i=0)

Taking the weighted inner product with each basis gives

∞∑
j=0

α̇j(t)〈φj , φi 〉W + αj(t)(j〈φj−1, φi 〉W + 〈φj+1, φi 〉W ) = 0,

i = 0, . . . , p.

Where

〈f (ξ), g(ξ)〉W =

∫
f (ξ)g(ξ)W (ξ)dξ.

Using orthogonality, 〈φj , φi 〉W = 〈φi , φi 〉W δij , we have

α̇i 〈φi , φi 〉W + (i + 1)αi+1〈φi , φi 〉W + αi−1〈φi , φi 〉W = 0, i = 0, . . . , p,
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Polarization Polynomial Chaos

Deterministic ODE system

Letting ~α represent the vector containing α0(t), . . . , αp(t) (and assuming
αp+1(t), etc. are identically zero) the system of ODEs can be written

~̇α + M~α = ~0,

with

M =


0 1
1 0 2

. . .
. . .

. . .
. . .

. . . p
1 0


The mean value of y(t, ξ) is α0(t).
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Polarization Polynomial Chaos

Generalizations

For any choice of family of orthogonal polynomials, there exists a triple
recursion formula. Given the arbitrary relation

ξφj = ajφj−1 + bjφj + cjφj+1

(with φ−1 = 0) then the matrix above becomes

M =


b0 a1

c0 b1 a2

. . .
. . .

. . .
. . .

. . . ap

cp−1 bp
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Polarization Polynomial Chaos

Generalizations

Consider the non-homogeneous ODE

ẏ + ky = g(t), k = k(ξ) = σξ + µ, ξ ∼ N (0, 1).

then

α̇i + σ [(i + 1)αi+1 + αi−1] + µαi = g(t)δ0i , i = 0, . . . , p,

or the deterministic ODE system

~̇α + (σM + µI )~α = g(t)~e1.
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Polarization Polynomial Chaos

Exponential convergence

Any set of orthogonal polynomials can be used in the truncated
expansion, but there may be an optimal choice.

If the polynomials are orthogonal with respect to weighting function
f (ξ), and k has PDF f (k), then it is known that the PC solution
converges exponentially in terms of p.

In practice, approximately 4 are generally sufficient.
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Polarization Polynomial Chaos

Figure: Solution of each mode with Gaussian random coefficient by fourth-order
Hermitian-chaos.
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Polarization Polynomial Chaos

Figure: Convergence of error with Gaussian random coefficient by fourth-order
Hermitian-chaos.
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Polarization Polynomial Chaos

Generalized Polynomial Chaos

Table: Popular distributions and corresponding orthogonal polynomials.

Distribution Polynomial Support

Gaussian Hermite (−∞,∞)
gamma Laguerre [0,∞)
beta Jacobi [a, b]

uniform Legendre [a, b]

Note: lognormal random variables may be handled as a non-linear function
(e.g., Taylor expansion) of a normal random variable.
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Polarization Random Polarization

Random Polarization

We can apply Polynomial Chaos method to our random polarization

τ Ṗ + P = ε0(εs − ε∞)E , τ = τ(ξ) = rξ + r

resulting in
(rM + mI )~̇α + ~α = ε0(εs − ε∞)E ~e1 =: ~g

or
A~̇α + ~α = ~g .

The macroscopic polarization, the expected value of the random
polarization at each point (t, x), is simply

P(t, x ;F ) = α0(t, x).
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Polarization Discretization

Applying the central difference approximation, based on the Yee scheme,
Maxwell’s equations with conductivity and polarization included

ε
∂E

∂t
= −∂H

∂z
− σE − ∂P

∂t

and

µ
∂H

∂t
= −∂E

∂z

become

E
n+ 1

2
k − E

n− 1
2

k

∆t
= −1

ε

Hn
k+ 1

2

− Hn
k− 1

2

∆z
− σ

ε

E
n+ 1

2
k + E

n− 1
2

k

2
− 1

ε

P
n+ 1

2
k − P

n− 1
2

k

∆t

and
Hn+1

k+ 1
2

− Hn
k+ 1

2

∆t
= − 1

µ

E
n+ 1

2
k+1 − E

n+ 1
2

k

∆z
.

Note that while the electric field and magnetic field are staggered in time,
the polarization updates simultaneously with the electric field.
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Polarization Discretization

Need a similar approach for discretizing the PC system

A~̇α + ~α = ~g .

Applying second order central differences, as before, to ~α = ~α(zk):

A
~αn+ 1

2 − ~αn− 1
2

∆t
+

~αn+ 1
2 + ~αn− 1

2

2
=

~gn+ 1
2 + ~gn− 1

2

2
.

Combining like terms gives

(2A + ∆tI )~αn+ 1
2 = (2A−∆tI )~αn− 1

2 + ∆t
(
~gn+ 1

2 + ~gn− 1
2

)
Note that we first solve the discrete electric field equation for E

n+ 1
2

k and

plug in here (in ~gn+ 1
2 ) to update ~α.
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Polarization Discretization

Comments on Polynomial Chaos

Gives a simple and efficient method to simulate systems involving
distributions of parameters.

Works equally well in three spatial dimensions.

Limitation: choice of polynomials depends on type of distribution.

Need error estimates to be sure that a sufficient number of
polynomials is used in the expansion.
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Inverse Problem for Distribution
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Inverse Problem for Distribution

Inverse Problem for RTD

Now that we have a numerical method for simulating Maxwell’s equations
with random polarization

P(x , t;F ) =

∫ τb

τa

P(x , t; τ)dF (τ)

we address the inverse problem for the relaxation time distribution F.

Given data {Ê}j we seek to determine a probability distribution F ∗,
such that

F ∗ = min
F∈P(Q)

J (F ),

where

J (F ) =
∑

j

k
(
E (tj ;F )− Êj

)2
.

Prof. Gibson (OSU) Inverse Problems for Distributions Reed 2010 44 / 56



Inverse Problem for Distribution Discrete Distribution Example

Discrete Distribution Example

Mixture of two Debye materials with τ1 and τ2

Total polarization a weighted average

P = α1P1(τ1) + α2P2(τ2)

Corresponds to the discrete probability distribution

dF (τ) = [α1δ(τ1) + α2δ(τ2)] dτ

Prof. Gibson (OSU) Inverse Problems for Distributions Reed 2010 45 / 56



Inverse Problem for Distribution Discrete Distribution Example

Discrete Distribution Inverse Problem

Assume the proportions α1 and α2 = 1− α1 are known.

Define the following least squares optimization problem:

min
(τ1,τ2)

J = min
(τ1,τ2)

∑
j

∣∣∣E (tj , 0; (τ1, τ2))− Êj

∣∣∣2 ,

where Êj is synthetic data generated using (τ∗1 , τ∗2 ) in our simulation
routine.
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Inverse Problem for Distribution Discrete Distribution Example

Discrete Distribution J using 106Hz
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log(tau
1
)

f=1e6,α
1
=.5

log(tau
2
)

lo
g(

J)

The solid line above the surface represents the curve of constant
τ̃ := α1τ1 + (1− α1)τ2. Note: ωτ̃ ≈ .15 < 1.

Prof. Gibson (OSU) Inverse Problems for Distributions Reed 2010 47 / 56



Inverse Problem for Distribution Discrete Distribution Example

Inverse Problem Results 106Hz

τ1 τ2 τ̃

Initial 3.95000e-8 1.26400e-8 2.60700e-8
LM 3.19001e-8 1.55032e-8 2.37016e-8
Final 3.16039e-8 1.55744e-8 2.37016e-8
Exact 3.16000e-8 1.58000e-8 2.37000e-8

Levenberg-Marquardt converges to curve of constant τ̃

Traversing curve results in accurate final estimates
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Inverse Problem for Distribution Discrete Distribution Example

Discrete Distribution J using 1011Hz
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The solid line above the surface represents the curve of constant
λ̃ := 1

c τ̃ = α1
cτ1

+ α2
cτ2

. Note: ωτ̃ ≈ 15000 > 1.
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Inverse Problem for Distribution Discrete Distribution Example

Inverse Problem Results 1011Hz

τ1 τ2 λ̃

Initial 3.95000e-8 1.26400e-8 0.174167
LM 4.08413e-8 1.41942e-8 0.158333
Final 3.16038e-8 1.57991e-8 0.158333
Exact 3.16000e-8 1.58000e-8 0.158333

Levenberg-Marquardt converges to curve of constant λ̃

Traversing curve results in accurate final estimates

Prof. Gibson (OSU) Inverse Problems for Distributions Reed 2010 50 / 56



Inverse Problem for Distribution Continuous Distribution Examples

Log-Normal Distribution of τ

Gaussian distribution of log(τ) with mean µ and with standard deviation σ:

dF (τ ;µ, σ) =
1√

2πσ2

1

ln 10

1

τ
exp

(
− (log τ − µ)2

2σ2

)
dτ,

Corresponding inverse problem:

min
q=(µ,σ)

∑
j

∣∣∣E (tj , 0; (µ, σ))− Êj

∣∣∣2 .
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Inverse Problem for Distribution Continuous Distribution Examples
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τ

f

Estimated density of τ as log normal

Initial estimate (*) Converged estimate (+)
and true estimate (o)

Shown are the initial density function, the minimizing density function and
the true density function (the latter two being practically identical).
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Inverse Problem for Distribution Continuous Distribution Examples

Bi-Gaussian Distribution of log τ

Bi-Gaussian distribution with means µ1 and µ2 and with standard deviations
σ1 and σ2:

dF (τ) = α1dF̂ (τ ;µ1, σ1) + (1− α1)dF̂ (τ ;µ2, σ2),

where

dF̂ (τ ;µ, σ) =
1√

2πσ2

1

ln 10

1

τ
exp

(
− (log τ − µ)2

2σ2

)
dτ,

Corresponding inverse problem:

min
q=(µ1,σ1,µ2,σ2)

∑
j

∣∣∣|E (tj , 0; q)| − |Êj |
∣∣∣2 .
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Inverse Problem for Distribution Continuous Distribution Examples

Bi-Gaussian Results with 106Hz

case µ1 σ1 µ2 σ2 τ̃
Initial 1.58001e-7 0.036606 3.16002e-9 0.0571969 8.1201e-8
µ1,µ2 4.27129e-8 0.036606 4.24844e-9 0.0571969 2.36499e-8
Final 3.09079e-8 0.0136811 1.63897e-8 0.0663628 2.37978e-8
Exact 3.16000e-8 0.0457575 1.58000e-8 0.0457575 2.37957e-8

Levenberg-Marquardt converges to curve of constant τ̃

Traversing curve results in reasonable final estimates for µk but worse
for σk .

Note: for this continuous distribution,

τ̃ =

∫
T

τdF (τ).
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Inverse Problem for Distribution Continuous Distribution Examples

Bi-Gaussian Results with 1011Hz

case µ1 σ1 µ2 σ2 λ̃
Initial 1.58001e-7 0.036606 3.16002e-9 0.0571969 0.538786
µ1,µ2 1.58001e-7 0.036606 1.12595e-8 0.0571969 0.158863
Final 3.23914e-8 0.0366059 1.56020e-8 0.0571968 0.158863
Exact 3.16000e-8 0.0457575 1.58000e-8 0.0457575 0.158863

Levenberg-Marquardt converges to curve of constant λ̃

Traversing curve results in reasonable final estimates for µk but no
change in σk .

Note: for this continuous distribution,

λ̃ =

∫
T

1

cτ
dF (τ).
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Conclusions

Comments on Time-domain Inverse Problems

Our estimation methods worked well for discrete distributions

Our estimation methods worked well for the continuous uniform
distribution and Gaussian distributions

We are currently only able to determine the means in the bi-Gaussian
distributions, this data is relatively insensitive to the standard
deviations
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