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© Background



Maxwell’'s Equations

oD

S - VxH=J (1a)

oB

S FVXE=0 (1b)

V-B=V-E=0 (1c)
E(0,x) =0 (1d)

B: Magpnetic field

D: Displacement field
H: Magnetizing field
E: Electric field



Constitutive Laws

D(t,x) = eger(x)E(t,x) + P(t,x) (2a)
B(t,x) = poH(t,x) + M(t,x) (2b)

Generalized Ohm's Law

Be
1Bl

Bi

J=0(E+uxB)+
1B||2

(JxB)+

(4% B) x B), 3)

Hall Parameter
po: Permeability of free-space

€o€r: Permittivity _
P: Polarization Be = pe|[B]|
M: Magnetization

o: Conductivity

u : Fluid velocity field

lon-slip parameter

Bi = penil|B||?
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Assume

- all functions are steady state,

- the magnetic field, B, is given,

- the fluid-flow, u, are prescribed.

Then the governing equations for an MHD channel are given by

VXxE=0 onQ, (4a)

Be Bi
J= (E+u><B)—|—||B||(J><B)+||B||2((J><B)><B) on Q, (4b)

V-J=0 onQQ. (4¢)



Using a matrix representation of the cross-product and algebra, (3) can be
rewritten as
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Using a matrix representation of the cross-product and algebra, (3) can be
rewritten as

J=0(T — Be[B]x — Bi[B]%) *(E+u x B) =F(E + u x B)

We define J; as
J;=GE (5)

Employing the divergence-free condition (4c), implies

—V.J; =V 5(uxB), (6)



Combining (5) and (6), and writing E = V), we have
71, -VV =0, (7a)

~V-J; =V ((uxB)). (7b)



Combining (5) and (6), and writing E = V), we have
71, -VV =0, (7a)

-V -Ji=V-(a(u x B)). (7b)
Thus, solving (4) is equivalent to a system of mixed Poisson equations,
and employing that
J=1J;+37(uxB) (8a)
E=VV. (8b)
(We write the system in this way to be able to apply the

Babuska-Brezzi-Kovalevskaya Theorem for existence and uniqueness of
solutions.)



We define the following spaces for our solutions to (7).
Jj € V(Q):{f6L2(Q):f~n:00n r},

and
Ve w(@) = w2(Q) = {f e H(Q): T(f) = 0},

where T(f) is the trace of f on T



We define the following spaces for our solutions to (7).
Jj € V(Q):{feB(Q):f.n:oOn r},

and
Ve w(@) = w2(Q) = {f e H(Q): T(f) = 0},

where T(f) is the trace of f on T

Then (7) is weakly-equivalent to

/(z—lJ) P — / VV-¢=0VY¢ec V(Q), (9a)
Q Q

_/QJ,..W:/Q(@xB)-wvweW(Q) (9b)

Well-posedness of this forward problem is established within [3].



We wish to formulate the parameter estimation problem for this system,
with potential unknowns

@ Fluid flow u

@ Plasma conductivity o
@ Electron mobility pi.
@ lon mobility p;
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We wish to formulate the parameter estimation problem for this system,
with potential unknowns

@ Fluid flow u

@ Plasma conductivity o
@ Electron mobility pi.
@ lon mobility p;

Well-posedness of this inverse problem is also established within [3].

However, we further allow for these parameters to be random.



© Uncertain Forward Problem
@ Toward Parameter Identification
@ Stochastic Collocation



Find J; € V,V € W that satisfy

JE[/——U ¢ /vv
—E /DJ,--Vzp]:JE[/D(z(uxB))-vw

V=VxI%Q), W=Wx L*Q).

=0, VpeV, (10a)

Ve W  (10b)

where



Find J; € V,V € W such that
AJ)+BW)=0 eV, (11a)
BJ)=G e W (11b)

Application of the Babuska-Brezzi-Kovalevskaya Theorem results in the
well-posedness of the system, following a similar approach to that of the
deterministic version [2].

Well-posedness of this random inverse problem is also established.
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q= (u’U’ILL?/'Li)'

U(x; q) = B;'((: Z))] » Ala) = %((Z)) B/(()q)]  Fla)= [G?q)]



q= (u’U’ILL?/'Li)'

o =[] w0 = [ate) 7] 0= [oto
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q= (U, U,/L,,U,').

o =[] w0 [afy *57) o= [o]

System (11), can be written as
AU = F. (12)

Let H=V x W, with norm || - ||2ﬁ: [ - ||2V+ [l - ||2W



q= (U, o, /s ,U'i)'
Q := (L3(D))* x L2(D) x LE(D) x LT(D)



q= (U, o, /s ,U'i)'
Q := (L3(D))* x L2(D) x LE(D) x LT(D)

(ID) min J(q) := [|U(: q)-DI%



Pq(q) = Pu(u) - Po(a) - Pu(pe) - Pui(pi)-



Pq(q) = Pu(u) - Po(a) - Pu(pe) - Pui(pi)-

E[f(q)|Py] = /Q F(q) dPy(q)



Po(@) = Pult) - Po(0) - Puc(jie) - Pry(1ai).
E[f(q)|Py] = /Q F(q) dPy(q)

(UID) o min J(Pa) = E|[|U(a) -l Po]
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Three major steps to reduce to finite dimensionality:

@ Spatial domain, D with K € N elements

@ Parameter search space, @, to a compact space, with N € N
dimension

o Distribution space, P(Q), with M poles



Let
C~? C Q, compact and CNPN = C~)ﬂIP’N

Then for P € PM(éN), M > N, the expected value of a random process
f: Qn — H is given by

E[f|P] = / (q) dP(q) = Z f(q)p;

with {q M. a basis for Qn.



Let
C~) C Q, compact and CNPN = C~)ﬂIP’N

Then for P € PM(éN), M > N, the expected value of a random process
f: Qn — H is given by

E[f|P] = / (q) dP(q) = Z f(q)p;

with {q M. a basis for Qn.

For fixed K M,N € N, and data {Uy}K_,, our dimension reduced
uncertain identification problem becomes

M K
2
(DRUID) min_ S u(P) =3 ’U(xk,qj")—uk b
PePM(Qn) j=1 k=1
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For the simplicity we describe the approach for one random process,
denoted Y, and with associated probability Py.
Assume Y is described by M random variables, denoted {1}, then

V(x,w) = V(x,Y1(w), ..., vm(w))

M
Let [k := 1/)/((9), and I := H M.
k=1



@ m=[my,...,my] an array of indices
@ My, the number of sample points in the direction 'y, k=1,..., M
M
o M= H Mk
k_1
{rJ i %y, a basis of orthogonal Chebyshev polynomials that satisfy

rirlPy(y) dy = d;wl, where w/ ::/r (F (ym)) 2Py (ym) dy

Ik
oy formg=1,...,My, k=1,..., M, the m*" unique zero in the
direction [,
® ym =1y, ...,y a collection of zeroes in each random direction

M
o rm(y) = ]:[ ™ (y), the product of the polynomials in each direction



Polynomial chaos expansion of V:

My

M
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Define
M
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Polynomial chaos expansion of V:

My Mg
VM, y) =D D VI Yim)rm(y)- (13)
m;=1 my=1
Define
M
= [T
j=1

Then we have defined an M—pole approximation with weights wy,.
Denote this distribution P{‘,”

E[V”|P¢”} Z Z Win V" (X, Yim)
m=1 my=1
For notational convenience, we write
E [vﬂpy} _E [vh’M}



@ Expected solution, IE[V”’M]
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@ Expected solution, IE[V”’M]

@ Deterministic solution V" (E[q])

E[V”’M] z Vh<E[q]>



@ Expected solution, IE[V”’M]

@ Deterministic solution V" (E[q])

E[VM] 2 vh(El])

Parameter | Mean | Standard Deviation
e 10/6 1/6
Uy 1600 160

Table 1: Parameter distributions used in the determining expected solutions



V(E[q])
10000
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y [m]

4000

2000

0 0.05 0.1 0.15 0.2 0.25
x[m]

Figure 1: Deterministic V



y [m]

0 0.05 0.1 0.15 0.2 0.25
x[m]

Figure 2: Expected V
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y [m]
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Figure 3: Deterministic V - Expected V
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Differences

200 -

—-—-Beta
100 - — Uniform

0-

-100 |-

-200 -

0 1 1 | |
0.01 0015 002 0025 0.08 0.03 0.04 0.045 0.05 0.055

Figure 4: Comparing the distributions of ¥ under an assumption of beta and
uniform parameter distribution. Associated lines are E[U(q)] — U(E[q]), with
upper and lower lines representing one standard deviation away.
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Suppose Y is described by

C:DxD—R, C(ts)=Cov(Y(tw),Y(s,w))

Assume C has known eigenfunctions, {¢;}7%, which satisfy

Noi(s) = / C(x,$)5(x) dx. (14)



Eigenfunctions for Exp. Covariance

1.5 .
-~ s ~. -
\ - NN o
\ / X el BN
\ // AN v, ~
\ / LN A
1.0 \ , N
\ ’ ! N7 \
\ / / N\ \
\ ! ’ N \
\ / 7/
" / oy \ \
0.5 \ J s Vo
\ K Iy N
\ / 1/ Lo
\ 7 17 \ \
\ / 14 \ \
0.0 v/ 7 (Y
\ s () AN
\ e v
Y S Yo
A s Yo
7\ 7 \
[ 7\ ’ \
—0.5 Y / ! vy
’ \ , I’ \ \\
/' \\ / N AAY
7’
/ ’ . .
/ \ JoTT Constant Eigenfunction
—1.0 ’ je ! . . P
~. / N /S |- Linear Eigenfunction
Svo - AN ’
S ———— ’ - . :
7 N e Quadratic Eigenfunction
—1.5
0.0 0.2 0.4 0.6 0.8 1.0

Figure 5: Eigenfunctions for exponential covariance, i.e. ¢;, for j =0,1,2.



C:DxD—R, C(t,s)=Cov(Y(tw),Y(s,w))

Assume C has known eigenfunctions, {¢;}?2;, which satisfy

Noj(s) = /D C(x, 5)d;(x) dx. (15)



C:DxD—R, C(t,s)=Cov(Y(tw),Y(s,w))

Assume C has known eigenfunctions, {¢;}?2;, which satisfy
Xi(s) = /D C(x,)5(x) dx. (15)

Define {¢; : Q@ = R, E[y;] =0, var[y] = 1};’20, uncorrelated w.r.t. C,

C(vj, Yk) = dj k-
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KLE:
Y (x,w) = B[Y](x) + Y v/ Ao(x)e5()- (16)
j=0

Let {rk}%_, be an orthogonal basis for PN(D).

E[Y](x) ~ Z are(x),

for some set {a : for k=0,..., N, a, € R}.
Thus, we define the FD approximation to Y as

YN(x,w) Zakrk(x) + \/_¢k(x Yk (w



KLE: -
Y (x,w) = B[Y](x) + Y v/ Ao(x)e5()- (16)
j=0

Let {rk}%_, be an orthogonal basis for PN(D).

E[Y](x) ~ Z are(x),

for some set {a : for k=0,..., N, a, € R}.
Thus, we define the FD approximation to Y as

YN (x,w) Zakrk(x) + VM i (X) U (w (17)

YN




Random Variables for KLE of p., correlation-length = 10

————— Constant: Y ZTTTTTTee

90/ —= Linear: Y}
_____ Quadratic: Y,

1.5

1.0

0.5

0.0 —mmmmms ::,:_’ ::::’_’_’_‘—‘—-’"——:::::::—\\tt::\\\~
0‘—0‘—‘ 0.2 0.4 0.6 0.8 \\;0

Figure 6: (Dashed) Individual random processes and (solid) quadratic fie.



Figure 7: Collocation sample points of the u. under the KLE, with an Fejér grid

of level= 3.

pe [1/T]

1.2

Level 3 Collocation Samples
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Table 2: Designated ‘true’ deterministic coeffecients and eigenvalues, for use in
the numerical implementation of (DRUID)

Parameter | True Value
ao 10/6
Ao 0.5
dl 0
A1 0.02
an -1.5
A2 0.016




Noise Level = 0, Y; Noise Level = 0, Y3
6 6
5 — Average recovered distribution 5
T Dt —— Average recovered distribution
fue Distribution - - True Distribution

4 4

3 3

2 2

1 1

0

15 155 16 165 17 175 18 185 1.8 1.7 16 15 14 13 1.2

Figure 8: Demonstrations of Distributional recovery, at x = (0.05,0.5,0.05), for
quadratic p, with an assumed uniform distribution covariance structure, and
with the partial domain available for data, at a noise level of 0.



Noise Level = 0.05, Y Noise Level = 0.05, Y3
6 6
5 —— Average recovered distribution 5 —— Average recovered distribution

- - True Distribution - - True Distribution

4 4
3 3
2 2
1 1
0
15 155 16 165 17 175 18 185 18 1.7 16 15 14 13 1.2

Figure 9: Demonstrations of Distributional recovery, at x = (0.05,0.5,0.05), for
quadratic p, with an assumed uniform distribution covariance structure, and
with the partial domain available for data, at a noise level of 0.05.



Noise Level = 0.25, ¥, Noise Level = 0.25, ¥,
6 6
5 5 v
—— Average recovered distribution
—— Average recovered distribution -~ True Distribution
4 - - True Distribution .
3 3
2 2
1 1
0
15 155 16 165 17 175 18 185 18 7 16 5 14 43 12

Figure 10: Demonstrations of Distributional recovery, at x = (0.05, 0.5, 0.05), for
quadratic p, with an assumed uniform distribution covariance structure, and
with the partial domain available for data, at a noise level of 0.25.



Table 3: Shape parameters for the random variables with an assumed beta

distribution function.

Yo | Y4 | Vs
2,2) [ (3,1) | (4,2)




Noise-level = 0.00, Y Noise-level = 0.00, Y>
0.16 0.12
Average Recovered Distribution Average Recovered Distribution
0.4 True Distribution True Distribution
0.1
0.12
0.08
0.1
0.08 0.06
0.06
0.04
0.04
0.02
0.02
0 0 e
4 2 0 2 4 6 8 -30 -20 10 0 10

Figure 11: Demonstrations of Distributional recovery, at x = (0.05, 0.5, 0.05), for
quadratic pe, with an assumed uniform distribution covariance structure, and
with the partial domain available for data, at a noise level of 0.



Noise-level = 0.05, Y}, Noise-level = 0.05, Y»
0.16 0.12
Average Recovered Distribution Average Recovered Distribution
0.4 True Distribution True Distribution
0.1
0.12
0.08
0.1
0.08 0.06
0.06
0.04
0.04
0.02
0.02
0 0 -
4 2 0 2 4 6 8 -30 -20 10 0 10

Figure 12: Demonstrations of Distributional recovery, at x = (0.05, 0.5, 0.05), for
quadratic pe, with an assumed uniform distribution covariance structure, and
with the partial domain available for data, at a noise level of 0.05.



Noise-level = 0.25, Y}, Noise-level = 0.25, Y5
0.16 0.12
Average Recovered Distribution Average Recovered Distribution
0.4 True Distribution True Distribution
0.1
0.12
0.08
0.1
0.08 0.06
0.06
0.04
0.04
0.02
0.02
0 0 .
4 2 0 2 4 6 8 -30 -20 10 0 10

Figure 13: Demonstrations of Distributional recovery, at x = (0.05, 0.5, 0.05), for
quadratic pe, with an assumed uniform distribution covariance structure, and
with the partial domain available for data, at a noise level of 0.25.
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Introduction of uncertainty
DRUID
Stochastic Collocation

Karhunen-Loéve Expansion
Numerical method for UPE

Numerical results for uniform and beta distributions.
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