Optimization under uncertainty in magnetohydrodynamic generators

Nathan L. Gibson

Professor Department of Mathematics

Scientific Computing and Numerical Analysis 2021 SIAM PNW Conference May 21, 2022

Collaborators

- Dr. Evan Rajbhandari, OSU
- Dr. Rigel Woodside, NETL

Funding

- NETL & ORISE ¹
- NSF grant DMS-2012882

¹The work was supported by the U.S. Department of Energy's Offshore Research Program. This project was also supported by an appointment to the Science Education Programs at the National Energy Technology Laboratory (NETL), administered by ORAU through the U.S. Department of Energy Oak Ridge Institute for Science and Education.

N. L. Gibson (OSU)

OUU for MHD

Outline

1 Introduction

2 Background

3) Uncertain Forward Problem

- Toward Parameter Identification
- Stochastic Collocation

4 Numerical Uncertain Parameter Estimation

- Karhunen-Loève Expansion
- Numerical UPE Results

Conclusion

Magnetohydrodynamics: Definition and Applications

Magnetohydrodynamics (MHD): the study of the magnetic properties and behaviour of electrically conducting fluids.

Magnetohydrodynamics: Definition and Applications

Magnetohydrodynamics (MHD): the study of the magnetic properties and behaviour of electrically conducting fluids. Applications

• Geophysics: geomagnetic dynamo

Magnetohydrodynamics: Definition and Applications

Magnetohydrodynamics (MHD): the study of the magnetic properties and behaviour of electrically conducting fluids. Applications

- Geophysics: geomagnetic dynamo
- Astrophysics: sun spots, solar wind

Introduction

Magnetohydrodynamics: Definition and Applications

Magnetohydrodynamics (MHD): the study of the magnetic properties and behaviour of electrically conducting fluids. Applications

- Geophysics: geomagnetic dynamo
- Astrophysics: sun spots, solar wind
- **Power Generation**: Harnessing electric current from an artificially created MHD system as a power source

Introduction

Magnetohydrodynamics: Definition and Applications

Magnetohydrodynamics (MHD): the study of the magnetic properties and behaviour of electrically conducting fluids. Applications

- Geophysics: geomagnetic dynamo
- Astrophysics: sun spots, solar wind
- Power Generation: Harnessing electric current from an artificially created MHD system as a power source ²

²Image courtesy R. Woodside

N. L. Gibson (OSU

Outline

Introduction

2 Background

Uncertain Forward Problem

- Toward Parameter Identification
- Stochastic Collocation

4 Numerical Uncertain Parameter Estimation

- Karhunen-Loève Expansion
- Numerical UPE Results

Conclusion

Governing Equations: Maxwell's Equations

Maxwell's	Equations
-----------	-----------

$rac{\partial \mathbf{D}}{\partial t} - abla imes \mathbf{H} = \mathbf{J}$	(1a)
∂B	(

$$\frac{\partial \mathbf{B}}{\partial t} + \nabla \times \mathbf{E} = 0$$
 (1b)

$$\nabla \cdot \mathbf{B} = \nabla \cdot \mathbf{E} = 0 \tag{1c}$$

$$\mathbf{E}(\mathbf{0},\mathbf{x}) = \mathbf{0} \tag{1d}$$

- B: Magnetic field
- D: Displacement field
- H: Magnetizing field
- E: Electric field

Electrical Relations

Constitutive Laws

$$\mathbf{D}(t,\mathbf{x}) = \epsilon_0 \epsilon_r(\mathbf{x}) \mathbf{E}(t,\mathbf{x}) + \mathbf{P}(t,\mathbf{x})$$
(2a)

$$\mathbf{B}(t,\mathbf{x}) = \mu_0 \mathbf{H}(t,\mathbf{x}) + \mathbf{M}(t,\mathbf{x})$$
(2b)

Generalized Ohm's Law

$$\mathbf{J} = \sigma(\mathbf{E} + \mathbf{u} \times \mathbf{B}) + \frac{\beta_e}{||\mathbf{B}||} (\mathbf{J} \times \mathbf{B}) + \frac{\beta_i}{||\mathbf{B}||^2} ((\mathbf{J} \times \mathbf{B}) \times \mathbf{B}),$$
(3)

Hall Parameter

 $\beta_e = \mu_e ||\mathbf{B}||$

lon-slip parameter

 $\beta_i = \mu_e \mu_i ||\mathbf{B}||^2$

μ_0 : Permeability of free-space

 $\epsilon_0 \epsilon_r$: Permittivity

P: Polarization

M: Magnetization

 σ : Conductivity

u : Fluid velocity field

Assume

- all functions are steady state,

Assume

- all functions are steady state,
- the magnetic field, **B**, is given,

Assume

- all functions are steady state,
- the magnetic field, **B**, is given,
- the fluid-flow, $\boldsymbol{u},$ are prescribed.

Assume

- all functions are steady state,
- the magnetic field, $\boldsymbol{B},$ is given,
- the fluid-flow, \mathbf{u} , are prescribed.

Then the governing equations for an MHD channel are given by

$$abla imes \mathbf{E} = 0 \qquad \text{on } \Omega,$$
(4a)

$$\mathbf{J} = \sigma(\mathbf{E} + \mathbf{u} \times \mathbf{B}) + \frac{\beta_e}{||\mathbf{B}||} (\mathbf{J} \times \mathbf{B}) + \frac{\beta_i}{||\mathbf{B}||^2} ((\mathbf{J} \times \mathbf{B}) \times \mathbf{B}) \quad \text{on } \Omega, \quad (4b)$$

$$\nabla \cdot \mathbf{J} = 0 \qquad \text{on } \Omega. \tag{4c}$$

Using a matrix representation of the cross-product and algebra, (3) can be rewritten as

$$\mathbf{J} = \sigma(\mathcal{I} - \beta_{\mathsf{e}}[\mathbf{B}]_{\times} - \beta_{i}[\mathbf{B}]_{\times}^{2})^{-1}(\mathbf{E} + \mathbf{u} \times \mathbf{B}) = \overline{\sigma}(\mathbf{E} + \mathbf{u} \times \mathbf{B})$$

Using a matrix representation of the cross-product and algebra, (3) can be rewritten as

$$\mathbf{J} = \sigma(\mathcal{I} - \beta_{e}[\mathbf{B}]_{\times} - \beta_{i}[\mathbf{B}]_{\times}^{2})^{-1}(\mathbf{E} + \mathbf{u} \times \mathbf{B}) = \overline{\underline{\sigma}}(\mathbf{E} + \mathbf{u} \times \mathbf{B})$$

We define \mathbf{J}_i as

$$\mathbf{J}_i = \overline{\underline{\sigma}} \mathbf{E} \tag{5}$$

Using a matrix representation of the cross-product and algebra, (3) can be rewritten as

$$\mathbf{J} = \sigma(\mathcal{I} - \beta_e[\mathbf{B}]_{\times} - \beta_i[\mathbf{B}]_{\times}^2)^{-1}(\mathbf{E} + \mathbf{u} \times \mathbf{B}) = \overline{\sigma}(\mathbf{E} + \mathbf{u} \times \mathbf{B})$$

We define J_i as

$$\mathbf{J}_i = \overline{\underline{\sigma}} \mathbf{E} \tag{5}$$

Employing the divergence-free condition (4c), implies

$$-\nabla \cdot \mathbf{J}_{i} = \nabla \cdot \overline{\underline{\sigma}}(\mathbf{u} \times \mathbf{B}), \tag{6}$$

Mixed-Poisson's Equations

Combining (5) and (6), and writing $\mathbf{E} = \nabla \mathcal{V}$, we have

$$\overline{\underline{\sigma}}^{-1}\mathbf{J}_{i}-\nabla\mathcal{V}=0, \tag{7a}$$

$$-\nabla \cdot \mathbf{J}_i = \nabla \cdot \left(\underline{\overline{\sigma}} (\mathbf{u} \times \mathbf{B}) \right). \tag{7b}$$

Mixed-Poisson's Equations

Combining (5) and (6), and writing $\mathbf{E} = \nabla \mathcal{V}$, we have

$$\overline{\underline{\sigma}}^{-1}\mathbf{J}_{i}-\nabla\mathcal{V}=0, \tag{7a}$$

$$-\nabla \cdot \mathbf{J}_i = \nabla \cdot \left(\overline{\underline{\sigma}} (\mathbf{u} \times \mathbf{B}) \right). \tag{7b}$$

Thus, solving (4) is equivalent to a system of mixed Poisson equations, and employing that

$$\mathbf{J} = \mathbf{J}_i + \overline{\underline{\sigma}}(\mathbf{u} \times \mathbf{B}) \tag{8a}$$

$$\mathbf{E} = \nabla \mathcal{V}.\tag{8b}$$

(We write the system in this way to be able to apply the Babuska-Brezzi-Kovalevskaya Theorem for existence and uniqueness of solutions.)

Strong Form to Weak Form

We define the following spaces for our solutions to (7).

$$\mathbf{J}_i \in V(\Omega) = \Big\{ f \in L^2(\Omega) : f \cdot \mathbf{n} = 0 \text{ on } \Gamma \Big\},$$

and

$$\mathcal{V}\in W(\Omega):=W^{1,2}_0(\Omega)=\Big\{f\in H^1(\Omega):\, T(f)=0\Big\},$$

where T(f) is the trace of f on Γ .

Strong Form to Weak Form

We define the following spaces for our solutions to (7).

$$\mathbf{J}_i \in V(\Omega) = \Big\{ f \in L^2(\Omega) : f \cdot \mathbf{n} = 0 \text{ on } \Gamma \Big\},$$

and

$$\mathcal{V} \in W(\Omega) := W_0^{1,2}(\Omega) = \Big\{ f \in H^1(\Omega) : T(f) = 0 \Big\},$$

where T(f) is the trace of f on Γ .

Then (7) is weakly-equivalent to

$$\int_{\Omega} (\overline{\underline{\sigma}}^{-1} \mathbf{J}) \cdot \phi - \int_{\Omega} \nabla \mathcal{V} \cdot \phi = 0 \,\,\forall \phi \in V(\Omega), \tag{9a}$$

$$-\int_{\Omega} \mathbf{J}_{i} \cdot \nabla \psi = \int_{\Omega} \left(\overline{\underline{\sigma}} \mathbf{u} \times \mathbf{B} \right) \cdot \nabla \psi \,\,\forall \psi \in W(\Omega) \tag{9b}$$

Well-posedness of this forward problem is established within [3].

Deterministic Parameter Identification

We wish to formulate the parameter estimation problem for this system, with potential unknowns

- Fluid flow **u**
- Plasma conductivity σ
- Electron mobility μ_e
- Ion mobility μ_i

Well-posedness of this inverse problem is also established within [3].

Deterministic Parameter Identification

We wish to formulate the parameter estimation problem for this system, with potential unknowns

- Fluid flow u
- Plasma conductivity σ
- Electron mobility μ_e
- Ion mobility μ_i

Well-posedness of this inverse problem is also established within [3].

However, we further allow for these parameters to be random.

Outline

Introduction

2 Background

3 Uncertain Forward Problem

- Toward Parameter Identification
- Stochastic Collocation

4 Numerical Uncertain Parameter Estimation

- Karhunen-Loève Expansion
- Numerical UPE Results

Conclusion

Uncertain Kinematic MHD Equations

Find $\mathbf{J}_i \in \overline{V}, \mathcal{V} \in \overline{W}$ that satisfy

$$\mathbb{E}\left[\int_{D} \overline{\underline{\sigma}}^{-1} \mathbf{J}_{i} \cdot \phi\right] - \mathbb{E}\left[\int_{D} \nabla \mathcal{V} \cdot \phi\right] = 0, \ \forall \phi \in \overline{\mathcal{V}}, \tag{10a}$$
$$- \mathbb{E}\left[\int_{D} \mathbf{J}_{i} \cdot \nabla \psi\right] = \mathbb{E}\left[\int_{D} \left(\overline{\underline{\sigma}}(\mathbf{u} \times \mathbf{B})\right) \cdot \nabla \psi\right], \ \forall \psi \in \overline{W} \tag{10b}$$

where

$$\overline{V} = V \times L^2(\Omega), \ \overline{W} = W \times L^2(\Omega).$$

Uncertain Kinematic MHD Operator Form

Find $\mathbf{J}_i \in \overline{V}, \mathcal{V} \in \overline{W}$ such that

$$\overline{\mathcal{A}}(\mathbf{J}_i) + \overline{\mathcal{B}}'(\mathcal{V}) = 0 \in \overline{V}', \tag{11a}$$

$$\overline{\mathcal{B}}(\mathbf{J}_i) = \overline{\mathbf{G}} \in \overline{W}' \tag{11b}$$

Application of the Babuska-Brezzi-Kovalevskaya Theorem results in the well-posedness of the system, following a similar approach to that of the deterministic version [2].

Well-posedness of this random inverse problem is also established.

Outline

Introduction

2 Background

Oncertain Forward Problem

- Toward Parameter Identification
- Stochastic Collocation

4 Numerical Uncertain Parameter Estimation

- Karhunen-Loève Expansion
- Numerical UPE Results

Conclusion

Notation

$$q = (\mathbf{u}, \sigma, \mu, \mu_i).$$
$$U(\mathbf{x}; q) = \begin{bmatrix} \mathbf{J}_i(\mathbf{x}; q) \\ \mathcal{V}(\mathbf{x}; q) \end{bmatrix}, \ A(q) = \begin{bmatrix} \overline{\mathcal{A}}(q) & \overline{\mathcal{B}}'(q) \\ \overline{\mathcal{B}}(q) & 0 \end{bmatrix}, \ F(q) = \begin{bmatrix} 0 \\ G(q) \end{bmatrix}$$

Notation

$$q = (\mathbf{u}, \sigma, \mu, \mu_i).$$
$$U(\mathbf{x}; q) = \begin{bmatrix} \mathbf{J}_i(\mathbf{x}; q) \\ \mathcal{V}(\mathbf{x}; q) \end{bmatrix}, \ A(q) = \begin{bmatrix} \overline{\mathcal{A}}(q) & \overline{\mathcal{B}}'(q) \\ \overline{\mathcal{B}}(q) & 0 \end{bmatrix}, \ F(q) = \begin{bmatrix} 0 \\ G(q) \end{bmatrix}$$

System (11), can be written as

$$AU = F. \tag{12}$$

Notation

$$q = (\mathbf{u}, \sigma, \mu, \mu_i).$$
$$U(\mathbf{x}; q) = \begin{bmatrix} \mathbf{J}_i(\mathbf{x}; q) \\ \mathcal{V}(\mathbf{x}; q) \end{bmatrix}, \ A(q) = \begin{bmatrix} \overline{\mathcal{A}}(q) & \overline{\mathcal{B}}'(q) \\ \overline{\mathcal{B}}(q) & 0 \end{bmatrix}, \ F(q) = \begin{bmatrix} 0 \\ G(q) \end{bmatrix}$$

System (11), can be written as

$$AU = F. \tag{12}$$

Let $\overline{H} = \overline{V} \times \overline{W}$, with norm $|| \cdot ||_{\overline{H}}^2 = || \cdot ||_{\overline{V}}^2 + || \cdot ||_{\overline{W}}^2$.

Deterministic Identification Problem

$$q = (\mathbf{u}, \sigma, \mu, \mu_i).$$

 $Q := (L^2(D))^3 \times L^{\infty}_+(D) \times L^{\infty}_+(D) \times L^{\infty}_+(D)$

Deterministic Identification Problem

$$egin{aligned} &q = (\mathbf{u}, \sigma, \mu, \mu_i). \ &Q := ig(L^2(D)ig)^3 imes L^\infty_+(D) imes L^\infty_+(D) imes L^\infty_+(D) \end{aligned}$$

(ID)
$$\min_{q \in Q} J(q) := ||U(\cdot;q) - D||_H^2$$

Uncertain Identification Problem

$$P_q(q) := P_{\mathbf{u}}(\mathbf{u}) \cdot P_{\sigma}(\sigma) \cdot P_{\mu_e}(\mu_e) \cdot P_{\mu_i}(\mu_i).$$

Uncertain Identification Problem

$$P_q(q) := P_{\mathbf{u}}(\mathbf{u}) \cdot P_{\sigma}(\sigma) \cdot P_{\mu_e}(\mu_e) \cdot P_{\mu_i}(\mu_i).$$

$$\mathbb{E}[f(q)|P_q] = \int_Q f(q) \ dP_q(q)$$

Uncertain Identification Problem

$$P_q(q) := P_{\mathbf{u}}(\mathbf{u}) \cdot P_{\sigma}(\sigma) \cdot P_{\mu_e}(\mu_e) \cdot P_{\mu_i}(\mu_i).$$

$$\mathbb{E}[f(q)|P_q] = \int_Q f(q) \ dP_q(q)$$

(UID) $\min_{P_q \in \mathcal{P}(Q)} J(P_q) := \mathbb{E}\Big[||U(q) - \mathcal{U}||_H^2 \Big| P_q \Big].$
Three major steps to reduce to finite dimensionality:

Three major steps to reduce to finite dimensionality:

• Spatial domain, D with $K \in \mathbb{N}$ elements

Three major steps to reduce to finite dimensionality:

- Spatial domain, D with $K \in \mathbb{N}$ elements
- Parameter search space, Q, to a compact space, with $N \in \mathbb{N}$ dimension

Three major steps to reduce to finite dimensionality:

- Spatial domain, D with $K \in \mathbb{N}$ elements
- Parameter search space, Q, to a compact space, with $N \in \mathbb{N}$ dimension
- Distribution space, $\mathcal{P}(Q)$, with M poles

DRUID

Let

$$\widetilde{Q} \subset \mathcal{Q}, ext{ compact and } \widetilde{Q}^{\mathcal{N}} = \widetilde{\mathcal{Q}} \cap \mathbb{P}^{\mathcal{N}}$$

Then for $P \in \mathcal{P}_M(\widetilde{Q}_N)$, $M \ge N$, the expected value of a random process $f : \widetilde{Q}_N \to H$ is given by

$$\mathbb{E}[f|P] = \int_{\widetilde{Q}} f(q) \; dP(q) = \sum_{j=1}^M f(q_j^N) p_j$$

with $\{q_j^N\}_{j=1}^M$ a basis for \widetilde{Q}_N .

DRUID

Let

$$\widetilde{Q} \subset Q, ext{ compact and } \widetilde{Q}^{N} = \widetilde{Q} \cap \mathbb{P}^{N}$$

Then for $P \in \mathcal{P}_M(\widetilde{Q}_N)$, $M \ge N$, the expected value of a random process $f : \widetilde{Q}_N \to H$ is given by

$$\mathbb{E}[f|P] = \int_{\widetilde{Q}} f(q) \; dP(q) = \sum_{j=1}^M f(q_j^N) p_j$$

with $\{q_j^N\}_{j=1}^M$ a basis for \widetilde{Q}_N . For fixed $K, M, N \in \mathbb{N}$, and data $\{\mathcal{U}_k\}_{k=1}^K$, our dimension reduced uncertain identification problem becomes

(DRUID)
$$\min_{P \in \mathcal{P}_{M}(\widetilde{Q}_{N})} J_{M,N}^{K}(P) = \sum_{j=1}^{M} \sum_{k=1}^{K} \left| U(x_{k}, q_{j}^{N}) - \mathcal{U}_{k} \right|^{2} p_{j}$$

Outline

1 Introduction

2 Background

Oncertain Forward Problem

- Toward Parameter Identification
- Stochastic Collocation

4 Numerical Uncertain Parameter Estimation

- Karhunen-Loève Expansion
- Numerical UPE Results

Conclusion

For the simplicity we describe the approach for one random process, denoted Y, and with associated probability P_Y .

For the simplicity we describe the approach for one random process, denoted Y, and with associated probability P_Y . Assume Y is described by \mathcal{M} random variables, denoted $\{\psi_k\}_{k=1}^{\mathcal{M}}$, then For the simplicity we describe the approach for one random process, denoted Y, and with associated probability P_Y . Assume Y is described by M random variables, denoted f_{M} , M = the

Assume Y is described by \mathcal{M} random variables, denoted $\{\psi_k\}_{k=1}^{\mathcal{M}}$, then

$$\mathcal{V}(\mathbf{x},\omega) = \mathcal{V}(\mathbf{x},\psi_1(\omega),\ldots,\psi_{\mathcal{M}}(\omega))$$

For the simplicity we describe the approach for one random process, denoted Y, and with associated probability P_Y . Assume Y is described by \mathcal{M} random variables, denoted $\{\psi_k\}_{k=1}^{\mathcal{M}}$, then

$$\mathcal{V}(\mathbf{x},\omega) = \mathcal{V}(\mathbf{x},\psi_1(\omega),\ldots,\psi_{\mathcal{M}}(\omega))$$

Let
$$\Gamma_k := \psi_k(\Omega)$$
, and $\Gamma := \prod_{k=1}^{\mathcal{M}} \Gamma_k$.

Notation

- $m = [m_1, \ldots, m_{\mathcal{M}}]$ an array of indices
- M_k , the number of sample points in the direction $\Gamma_k, \ k = 1, \dots, \mathcal{M}$
- $M = \prod_{k=1}^{\mathcal{M}} M_k$
- $\{r_k^j\}_{j=0}^{M_k}$, a basis of orthogonal Chebyshev polynomials that satisfy

$$\int_{\Gamma_k} r_k^j r_k^j P_Y(y) \ dy = \delta_{jl} w_k^j, \text{ where } w_k^j := \int_{\Gamma_k} \left(r_k^j(y_m) \right)^2 P_Y(y_m) \ dy$$

- $y_k^{m_k}$ for $m_k = 1, \ldots, M_k, \ k = 1, \ldots, M$, the m^{th} unique zero in the direction Γ_k
- $y_m = [y_1^{m_1}, \dots, y_M^{m_M}]$, a collection of zeroes in each random direction • $r_m(y) = \prod_{j=1}^{\mathcal{M}} r_j^{m_j}(y)$, the product of the polynomials in each direction

$$\mathcal{V}^{h,M}(\mathbf{x},y) = \sum_{m_1=1}^{M_1} \dots \sum_{m_{\mathcal{M}}=1}^{M_{\mathcal{M}}} \mathcal{V}^h(\mathbf{x},y_m) r_m(y).$$
(13)

$$\mathcal{V}^{h,M}(\mathbf{x},y) = \sum_{m_1=1}^{M_1} \dots \sum_{m_{\mathcal{M}}=1}^{M_{\mathcal{M}}} \mathcal{V}^h(\mathbf{x},y_m) r_m(y).$$
(13)

Define

$$w_m := \prod_{j=1}^{\mathcal{M}} w_j^{m_j}.$$

$$\mathcal{V}^{h,M}(\mathbf{x},y) = \sum_{m_1=1}^{M_1} \dots \sum_{m_{\mathcal{M}}=1}^{M_{\mathcal{M}}} \mathcal{V}^h(\mathbf{x},y_m) r_m(y).$$
(13)

Define

$$w_m := \prod_{j=1}^{\mathcal{M}} w_j^{m_j}.$$

Then we have defined an M-pole approximation with weights w_m . Denote this distribution P_Y^M

$$\mathcal{V}^{h,M}(\mathbf{x},y) = \sum_{m_1=1}^{M_1} \dots \sum_{m_{\mathcal{M}}=1}^{M_{\mathcal{M}}} \mathcal{V}^h(\mathbf{x},y_m) r_m(y).$$
(13)

Define

$$w_m := \prod_{j=1}^{\mathcal{M}} w_j^{m_j}.$$

Then we have defined an M-pole approximation with weights w_m . Denote this distribution P_Y^M

$$\mathbb{E}\left[\mathcal{V}^{h}|\mathcal{P}_{Y}^{M}\right] = \sum_{m_{1}=1}^{M_{1}} \dots \sum_{m_{M}=1}^{M_{M}} w_{m}\mathcal{V}^{h}(\mathbf{x}, y_{m})$$

$$\mathcal{V}^{h,M}(\mathbf{x},y) = \sum_{m_1=1}^{M_1} \dots \sum_{m_{\mathcal{M}}=1}^{M_{\mathcal{M}}} \mathcal{V}^h(\mathbf{x},y_m) r_m(y).$$
(13)

Define

$$w_m := \prod_{j=1}^{\mathcal{M}} w_j^{m_j}.$$

Then we have defined an M-pole approximation with weights w_m . Denote this distribution P_Y^M

$$\mathbb{E}\left[\mathcal{V}^{h}|\mathcal{P}_{Y}^{M}\right] = \sum_{m_{1}=1}^{M_{1}} \dots \sum_{m_{M}=1}^{M_{M}} w_{m}\mathcal{V}^{h}(\mathbf{x}, y_{m})$$

For notational convenience, we write

$$\mathbb{E}\left[\mathcal{V}^{h}|P_{Y}^{M}\right] = \mathbb{E}\left[\mathcal{V}^{h,M}\right]$$

• Expected solution, $\mathbb{E}\left[\mathcal{V}^{h,M}
ight]$

- *Expected* solution, $\mathbb{E}\left[\mathcal{V}^{h,M}\right]$
- Deterministic solution $\mathcal{V}^hig(\mathbb{E}[q]ig)$

- *Expected* solution, $\mathbb{E}\left[\mathcal{V}^{h,M}\right]$
- Deterministic solution $\mathcal{V}^hig(\mathbb{E}[q]ig)$

$$\mathbb{E}\left[\mathcal{V}^{h,M}\right] \stackrel{?}{=} \mathcal{V}^{h}\left(\mathbb{E}[q]\right)$$

- Expected solution, \mathbb{E} \bigg[\mathcal{V}^{h,M} \bigg]
 Deterministic solution \mathcal{V}^h \bigg(\mathbb{E}[q] \big)

$$\mathbb{E}\Big[\mathcal{V}^{h,M}\Big]\stackrel{?}{=}\mathcal{V}^{h}\Big(\mathbb{E}[q]\Big)$$

Parameter	Mean	Standard Deviation
μ_{e}	10/6	1/6
\mathbf{u}_{x}	1600	160

Table 1: Parameter distributions used in the determining *expected* solutions

Figure 1: Deterministic \mathcal{V}

Figure 2: Expected \mathcal{V}

Figure 3: Deterministic \mathcal{V} - Expected \mathcal{V}

Comparing spatial functions $\mathbb{E}[\mathcal{V}]$

Figure 4: Comparing the distributions of \mathcal{V} under an assumption of beta and uniform parameter distribution. Associated lines are $\mathbb{E}[U(q)] - U(\mathbb{E}[q])$, with upper and lower lines representing one standard deviation away.

Outline

Introduction

2 Background

3 Uncertain Forward Problem

- Toward Parameter Identification
- Stochastic Collocation

4 Numerical Uncertain Parameter Estimation

- Karhunen-Loève Expansion
- Numerical UPE Results

Conclusion

Outline

Introduction

2 Background

Oncertain Forward Problem

- Toward Parameter Identification
- Stochastic Collocation

4 Numerical Uncertain Parameter Estimation

- Karhunen-Loève Expansion
- Numerical UPE Results

5 Conclusion

Suppose Y is described by

$$\mathcal{C}: D imes D o \mathbb{R}, \quad \mathcal{C}(\mathbf{t}, \mathbf{s}) = \mathsf{Cov}\big(Y(\mathbf{t}, \omega), Y(\mathbf{s}, \omega)\big)$$

Suppose Y is described by

$$\mathcal{C}: D imes D o \mathbb{R}, \quad \mathcal{C}(\mathbf{t}, \mathbf{s}) = \mathsf{Cov}(Y(\mathbf{t}, \omega), Y(\mathbf{s}, \omega))$$

Assume C has known eigenfunctions, $\{\phi_j\}_{j=0}^{\infty}$,

Suppose Y is described by

$$\mathcal{C}: D imes D o \mathbb{R}, \quad \mathcal{C}(\mathbf{t}, \mathbf{s}) = \mathsf{Cov}(Y(\mathbf{t}, \omega), Y(\mathbf{s}, \omega))$$

Assume $\mathcal C$ has known eigenfunctions, $\{\phi_j\}_{j=0}^\infty$, which satisfy

$$\lambda_j \phi_j(s) = \int_D \mathcal{C}(\mathbf{x}, s) \phi_j(\mathbf{x}) \, d\mathbf{x}. \tag{14}$$

Figure 5: Eigenfunctions for exponential covariance, i.e. ϕ_i , for j = 0, 1, 2.

$$\mathcal{C}: D imes D o \mathbb{R}, \quad \mathcal{C}(\mathbf{t}, \mathbf{s}) = \mathsf{Cov}\big(Y(\mathbf{t}, \omega), Y(\mathbf{s}, \omega)\big)$$

Assume $\mathcal C$ has known eigenfunctions, $\{\phi_j\}_{j=1}^\infty$, which satisfy

$$\lambda_j \phi_j(s) = \int_D C(\mathbf{x}, s) \phi_j(\mathbf{x}) \, d\mathbf{x}.$$
(15)

$$\mathcal{C}: D imes D o \mathbb{R}, \quad \mathcal{C}(\mathbf{t}, \mathbf{s}) = \mathsf{Cov}(Y(\mathbf{t}, \omega), Y(\mathbf{s}, \omega))$$

Assume C has known eigenfunctions, $\{\phi_j\}_{j=1}^\infty$, which satisfy

$$\lambda_j \phi_j(s) = \int_D C(\mathbf{x}, s) \phi_j(\mathbf{x}) \, d\mathbf{x}.$$
(15)

Define $\{\psi_j : \Omega \to \mathbb{R}, \mathbb{E}[\psi_j] = 0, \text{ var}[\psi_j] = 1\}_{j=0}^{\infty}$, uncorrelated w.r.t. C, $C(\psi_j, \psi_k) = \delta_{j,k}$.

Karhunen-Loève expansion (KLE)

KLE:

$$Y(\mathbf{x},\omega) = \mathbb{E}[Y](\mathbf{x}) + \sum_{j=0}^{\infty} \sqrt{\lambda_j} \phi_j(\mathbf{x}) \psi_j(\omega).$$
(16)

Karhunen-Loève expansion (KLE)

KLE:

$$Y(\mathbf{x},\omega) = \mathbb{E}[Y](\mathbf{x}) + \sum_{j=0}^{\infty} \sqrt{\lambda_j} \phi_j(\mathbf{x}) \psi_j(\omega).$$
(16)

Let $\{r_k\}_{k=0}^N$ be an orthogonal basis for $\mathbb{P}^N(D)$.

Karhunen-Loève expansion (KLE)

KLE:

$$Y(\mathbf{x},\omega) = \mathbb{E}[Y](\mathbf{x}) + \sum_{j=0}^{\infty} \sqrt{\lambda_j} \phi_j(\mathbf{x}) \psi_j(\omega).$$
(16)

Let $\{r_k\}_{k=0}^N$ be an orthogonal basis for $\mathbb{P}^N(D)$.

$$\mathbb{E}[Y](\mathbf{x}) pprox \sum_{k=1}^{N} a_k r_k(\mathbf{x}),$$

for some set $\{a_k : \text{ for } k = 0, \dots, N, a_k \in \mathbb{R}\}.$
Karhunen-Loève expansion (KLE)

KLE:

$$Y(\mathbf{x},\omega) = \mathbb{E}[Y](\mathbf{x}) + \sum_{j=0}^{\infty} \sqrt{\lambda_j} \phi_j(\mathbf{x}) \psi_j(\omega).$$
(16)

Let $\{r_k\}_{k=0}^N$ be an orthogonal basis for $\mathbb{P}^N(D)$.

$$\mathbb{E}[Y](\mathbf{x}) \approx \sum_{k=1}^{N} a_k r_k(\mathbf{x}),$$

for some set $\{a_k : \text{ for } k = 0, ..., N, a_k \in \mathbb{R}\}$. Thus, we define the FD approximation to Y as

$$Y^{N}(\mathbf{x},\omega) := \sum_{k=0}^{N} a_{k} r_{k}(\mathbf{x}) + \sqrt{\lambda_{k}} \phi_{k}(\mathbf{x}) \psi_{k}(\omega)$$

Karhunen-Loève expansion (KLE)

KLE:

$$Y(\mathbf{x},\omega) = \mathbb{E}[Y](\mathbf{x}) + \sum_{j=0}^{\infty} \sqrt{\lambda_j} \phi_j(\mathbf{x}) \psi_j(\omega).$$
(16)

Let $\{r_k\}_{k=0}^N$ be an orthogonal basis for $\mathbb{P}^N(D)$.

$$\mathbb{E}[Y](\mathbf{x}) \approx \sum_{k=1}^{N} a_k r_k(\mathbf{x}),$$

for some set $\{a_k : \text{ for } k = 0, ..., N, a_k \in \mathbb{R}\}$. Thus, we define the FD approximation to Y as

$$Y^{N}(\mathbf{x},\omega) := \sum_{k=0}^{N} \underbrace{a_{k}r_{k}(\mathbf{x}) + \sqrt{\lambda_{k}}\phi_{k}(\mathbf{x})\psi_{k}(\omega)}_{Y_{k}^{N}}.$$
 (17)

Figure 6: (Dashed) Individual random processes and (solid) quadratic μ_e .

Figure 7: Collocation sample points of the μ_e under the KLE, with an Fejér grid of level= 3.

Outline

Introduction

2 Background

Oncertain Forward Problem

- Toward Parameter Identification
- Stochastic Collocation

4 Numerical Uncertain Parameter Estimation

- Karhunen-Loève Expansion
- Numerical UPE Results

5 Conclusion

 Table 2: Designated 'true' deterministic coeffecients and eigenvalues, for use in the numerical implementation of (DRUID)

Parameter	True Value
<i>a</i> 0	10/6
λ_0	0.5
a_1	0
λ_1	0.02
<i>a</i> 2	-1.5
λ_2	0.016

Figure 8: Demonstrations of Distributional recovery, at $\mathbf{x} = (0.05, 0.5, 0.05)$, for **quadratic** μ_e , with an assumed **uniform** distribution covariance structure, and with the **partial** domain available for data, at a noise level of 0.

Figure 9: Demonstrations of Distributional recovery, at $\mathbf{x} = (0.05, 0.5, 0.05)$, for **quadratic** μ_e , with an assumed **uniform** distribution covariance structure, and with the **partial** domain available for data, at a noise level of 0.05.

Figure 10: Demonstrations of Distributional recovery, at $\mathbf{x} = (0.05, 0.5, 0.05)$, for **quadratic** μ_e , with an assumed **uniform** distribution covariance structure, and with the **partial** domain available for data, at a noise level of 0.25.

Table 3: Shape parameters for the random variables with an assumed beta distribution function.

Y_0	Y_1	Y_2
(2,2)	(3,1)	(4,2)

Figure 11: Demonstrations of Distributional recovery, at $\mathbf{x} = (0.05, 0.5, 0.05)$, for **quadratic** μ_e , with an assumed **uniform** distribution covariance structure, and with the **partial** domain available for data, at a noise level of 0.

Figure 12: Demonstrations of Distributional recovery, at $\mathbf{x} = (0.05, 0.5, 0.05)$, for **quadratic** μ_e , with an assumed **uniform** distribution covariance structure, and with the **partial** domain available for data, at a noise level of 0.05.

Figure 13: Demonstrations of Distributional recovery, at $\mathbf{x} = (0.05, 0.5, 0.05)$, for **quadratic** μ_e , with an assumed **uniform** distribution covariance structure, and with the **partial** domain available for data, at a noise level of 0.25.

Outline

Introduction

2 Background

3) Uncertain Forward Problem

- Toward Parameter Identification
- Stochastic Collocation

4 Numerical Uncertain Parameter Estimation

- Karhunen-Loève Expansion
- Numerical UPE Results

5 Conclusion

- Introduction of uncertainty
- DRUID
- Stochastic Collocation
- Karhunen-Loève Expansion
- Numerical method for UPE
- Numerical results for uniform and beta distributions.

Bibliography I

- E. Rajbhandari, N.L. Gibson, and C. Woodside. "Stochastic Collocation Error Analysis for the Full 3-D Magnetohydrodynamic System". In: *Pre-print* (2022).
- [2] E. Rajbhandari, N.L. Gibson, and C.R. Woodside. "Estimating Parameters' Distributions Within a Kinematic Magnetohydrodynamic framework". In: *Pre-print* (2022).
- [3] E. Rajbhandari, N.L. Gibson, and C.R. Woodside. "Parameter Estimation for 3-D Magnetohydrodynamics Generator". In: *Pre-print* (2021).
- [4] E. Rajbhandari, N.L. Gibson, and C.R. Woodside. "Quantifying uncertainty with stochastic collocation in the kinematic magentohydrodynamic framework". In: *Journal of Computational Physics: Conference Series* (2022).