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Introduction Motivation

Methane hydrates are
an ice-like substance
containing methane
molecules trapped in a
lattice of water
molecules.

We will consider a
simplified model of
evolution of methane
hydrates in the hydrate
zone of the sea-bed.

Components:

I CH4

I H2O

∗[Images from DOE-NETL]
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Model Development Conservation of mass

Conservation of mass for CH4 component

Let Ω⊂ R3 be a bounded region of points x ∈ Ω.

Parameters: (assumed given)
φ0 porosity
K0 permeability
fM external source of CH4

Assumptions:

Pressure P(x) given by hydrostatic gradients

Temperature T (x) given by geothermal gradients

High pressure and low temperature imply Hydrate zone:
only liquid and hydrate phases present
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Model Development Conservation of mass

Conservation of mass for CH4 component (cont.)

Unknowns:

Sl , Sh saturations (void fractions), with Sh = 1−Sl

χlM , χlW , χlS , with χlM + χlW + χlS ,= 1
mass fractions of methane, water and salt in liquid phase

Note:

Salinity, χlS , assumed known and fixed to that of seawater

χhM , χhW mass fractions in hydrate phase (assumed known)

Conservation of mass for CH4 component

∂

∂ t
(φ0Sl ρl χlM + φ0ShρhχhM)−∇ · (DlMρl ∇χlM) = fM (1)

where densities ρl , ρh and diffusion DlM are assumed constant.
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Model Development Conservation of mass

Unified notation

We redefine parameters

R :=
ρhχhM

ρl
, f :=

fM
ρl φ0

, D0 :=
DlM

φ0
,

and redefine variables

S := Sl , v := χlM , u := Sv +R(1−S),

so that (1) becomes
∂u

∂ t
−∇ · (D0∇v) = f , (2)

where we may further scale the problem so that D0 = 1.
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Model Development Solubility constraints

Still need 〈Sl ,χlM〉 ∈F (x) provided by solubility constraints. First, we
assume that the maximum solubility constraint χmax

lM (x) is given.

Then the solubility satisfies a nonlinear
complementarity constraint (NCC)

Solubility constraint


χlM ≤ χmax

lM , Sl = 1,

χlM = χmax
lM , Sl ≤ 1,

(χmax
lM −χlM)(1−Sl ) = 0.

(3)

F (x)

v

S

v∗

1

In our unified notation, we let v∗ = χmax
lM , so that

〈v ,S〉 ∈F (x ; ·) := [0,v∗(x)]×{1}∪{v∗(x)}× (0,1]

Or equivalently,

v ∈ αMH(x ;u) := (u−v∗(x))−+ v∗(x), u ≤ R. (4)
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Abstract Evolution Equation

We consider the initial boundary-value problem

Abstract Evolution Equation

∂u

∂ t
−∆v =f , v ∈ α(u) on Ω× (0,T )

v =0 on ∂ Ω× (0,T )

u(·,0) =u0(·) on Ω.

where α is maximal montone, or in the case of a measureable family
{α(x ; ·) : x ∈ Ω}, each is a maximal monotone relation.
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Abstract Evolution Equation Examples

Examples: α(u) = αS , αMH , αE , αW︸ ︷︷ ︸
Toy models

, αPM ; Note : β (v) = α−1

αS

1

1

Stefan free-boundary problem:

αS (u) = u−+ (u−1)+

αMH

v∗ R

v∗

Methane hydrate (our problem):
αMH (x ; ·) = (u−v∗(x))−+v∗(x), u ≤ R

αE

1

Elbow

Showalter [1984]

αW

1

Woble

Porous medium equation:

α = αPM (u) = |u|um−1 (m > 1 slow diffusion, 0 <m < 1 fast diffusion)
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Abstract Evolution Equation Analysis

Summary of theoretical results for αMH

For the single graph case, we represent the non-linearity as a
subgradient, and prove a useful comparison principle, which allows
to extend the graph of β = α−1 to one which is affine bounded.
Optimal regularity results follow.

I Properties of u,v are the same as those for the Stefan problem.

We extend existing theory for porous medium equation to cover the
case of a measureable family of graphs in order to show
well-posedness.

I Based on a normal convex integrand construction.

Details in Gibson, Medina, Peszynska, and Showalter [2013]

N. L. Gibson (OSU) Methane Hydrate Evolution SIAM AN13 10 / 39



Abstract Evolution Equation Analysis

Summary of theoretical results for αMH

For the single graph case, we represent the non-linearity as a
subgradient, and prove a useful comparison principle, which allows
to extend the graph of β = α−1 to one which is affine bounded.
Optimal regularity results follow.

I Properties of u,v are the same as those for the Stefan problem.

We extend existing theory for porous medium equation to cover the
case of a measureable family of graphs in order to show
well-posedness.

I Based on a normal convex integrand construction.

Details in Gibson, Medina, Peszynska, and Showalter [2013]

N. L. Gibson (OSU) Methane Hydrate Evolution SIAM AN13 10 / 39



Numerical aspects Fully discrete scheme

FE formulation for α = αMH(x , ·)

First, we apply fully implicit time stepping.
Let Vh ⊂ V be the finite element space of
continuous piecewise linears on triangulation
of Ω.

Find vn
h ∈ Vh at tn (n > 0)

(un
h ,ψ) + τ(Ovn

h ,Oψ) = (un−1
h ,ψ)

un
h ∈ β (vn

h )
(u0

h,ψ) := (u0,ψ), ∀ψ ∈ Vh

Let
M : mass matrix

K : stiffness matrix

vn
h ≈ vn ∈ RM

un
h ≈ un ∈ RM

Mun + τKvn = Mun−1

Mass-lumping allows
Ah = M−1K

Fully discrete scheme{
un + τAhvn = un−1

〈vn
j ,u

n
j 〉 ∈ β (xj ; ·) := βj (·)

where the constraint is applied point-wise.

N. L. Gibson (OSU) Methane Hydrate Evolution SIAM AN13 11 / 39



Numerical aspects Fully discrete scheme

FE formulation for α = αMH(x , ·)

First, we apply fully implicit time stepping.
Let Vh ⊂ V be the finite element space of
continuous piecewise linears on triangulation
of Ω.

Find vn
h ∈ Vh at tn (n > 0)

(un
h ,ψ) + τ(Ovn

h ,Oψ) = (un−1
h ,ψ)

un
h ∈ β (vn

h )
(u0

h,ψ) := (u0,ψ), ∀ψ ∈ Vh

Let
M : mass matrix

K : stiffness matrix

vn
h ≈ vn ∈ RM

un
h ≈ un ∈ RM

Mun + τKvn = Mun−1

Mass-lumping allows
Ah = M−1K

Fully discrete scheme{
un + τAhvn = un−1

〈vn
j ,u

n
j 〉 ∈ β (xj ; ·) := βj (·)

where the constraint is applied point-wise.

N. L. Gibson (OSU) Methane Hydrate Evolution SIAM AN13 11 / 39



Numerical aspects Fully discrete scheme

FE formulation for α = αMH(x , ·)

First, we apply fully implicit time stepping.
Let Vh ⊂ V be the finite element space of
continuous piecewise linears on triangulation
of Ω.

Find vn
h ∈ Vh at tn (n > 0)

(un
h ,ψ) + τ(Ovn

h ,Oψ) = (un−1
h ,ψ)

un
h ∈ β (vn

h )
(u0

h,ψ) := (u0,ψ), ∀ψ ∈ Vh

Let
M : mass matrix

K : stiffness matrix

vn
h ≈ vn ∈ RM

un
h ≈ un ∈ RM

Mun + τKvn = Mun−1

Mass-lumping allows
Ah = M−1K

Fully discrete scheme{
un + τAhvn = un−1

〈vn
j ,u

n
j 〉 ∈ β (xj ; ·) := βj (·)

where the constraint is applied point-wise.

N. L. Gibson (OSU) Methane Hydrate Evolution SIAM AN13 11 / 39



Numerical aspects Fully discrete scheme

Lemma [N.Gibson, P. Medina, M. Peszynska, R.E. Showalter]

For every n > 0 there is a unique solution vn ∈ RM of the discrete
problem for β = βMH(x ; ·) it is the unique minimizer of the appropriate
functional Ψ(v) for which the discrete problem is the Euler-Lagrange
condition.

Corollary

The discrete scheme is uniquely solvable for each of
β = βMH(x , ·), βS , βE , βW .
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Numerical aspects Fully discrete scheme

Nonlinear algebraic subproblem

Newton-type solvers have difficulties near singularties;
may not be defined for multi-valued operators.

Relaxation solvers require a number of iterations proportional to
the number of degrees of freedom.

In each, optimal convergence results are close to
O(h) for v and O(h

1
2 ) for u in L2(Q).

We propose a scheme which does not require regularization and
can be applied when neither α nor β are functions.

The method also applies when constraints are parameterized by x .

N. L. Gibson (OSU) Methane Hydrate Evolution SIAM AN13 13 / 39



Numerical aspects Fully discrete scheme

Nonlinear algebraic subproblem

Newton-type solvers have difficulties near singularties;
may not be defined for multi-valued operators.

Relaxation solvers require a number of iterations proportional to
the number of degrees of freedom.

In each, optimal convergence results are close to
O(h) for v and O(h

1
2 ) for u in L2(Q).

We propose a scheme which does not require regularization and
can be applied when neither α nor β are functions.

The method also applies when constraints are parameterized by x .

N. L. Gibson (OSU) Methane Hydrate Evolution SIAM AN13 13 / 39



Numerical aspects Fully discrete scheme

Nonlinear algebraic subproblem

Newton-type solvers have difficulties near singularties;
may not be defined for multi-valued operators.

Relaxation solvers require a number of iterations proportional to
the number of degrees of freedom.

In each, optimal convergence results are close to
O(h) for v and O(h

1
2 ) for u in L2(Q).

We propose a scheme which does not require regularization and
can be applied when neither α nor β are functions.

The method also applies when constraints are parameterized by x .

N. L. Gibson (OSU) Methane Hydrate Evolution SIAM AN13 13 / 39



Numerical aspects Fully discrete scheme

Nonlinear algebraic subproblem

Newton-type solvers have difficulties near singularties;
may not be defined for multi-valued operators.

Relaxation solvers require a number of iterations proportional to
the number of degrees of freedom.

In each, optimal convergence results are close to
O(h) for v and O(h

1
2 ) for u in L2(Q).

We propose a scheme which does not require regularization and
can be applied when neither α nor β are functions.

The method also applies when constraints are parameterized by x .

N. L. Gibson (OSU) Methane Hydrate Evolution SIAM AN13 13 / 39



Numerical aspects Fully discrete scheme

Nonlinear algebraic subproblem

Newton-type solvers have difficulties near singularties;
may not be defined for multi-valued operators.

Relaxation solvers require a number of iterations proportional to
the number of degrees of freedom.

In each, optimal convergence results are close to
O(h) for v and O(h

1
2 ) for u in L2(Q).

We propose a scheme which does not require regularization and
can be applied when neither α nor β are functions.

The method also applies when constraints are parameterized by x .

N. L. Gibson (OSU) Methane Hydrate Evolution SIAM AN13 13 / 39



Numerical aspects NCC and Semismooth Newton solver

Nonlinear Complementarity Problem (NCP)

We represent
〈v ,u〉 ∈ β

as an NCP-function
φ(u,v) = 0.

For example,

〈v ,u〉 ∈βMH ≡ φMH(u,v) := min(u−v ,v∗(x)−v) = 0.

Similarly,
〈v ,u〉 ∈ βE ≡ φE (u,v) := min(u,1−v) = 0,

〈v ,u〉 ∈ βW ≡ φW (u,v) := min(1−u,v) = 0,

〈v ,u〉 ∈ βS ≡ φS (u,v) := u−v −max(0,min(u,1)) = 0.
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Numerical aspects NCC and Semismooth Newton solver

Semismooth Newton solver

Problem solved at every time step becomes

{
u + τAhv = b

min(uj −vj ,v
∗(xj )−vj ) = 0, ∀j

It can be shown that

each of φMH ,φE ,φW ,φS is semi-smooth

the Jacobian is never singular

Semismooth Newton converges superlinearly for these NCC problems

Ben Gharbia, Gilbert, and Jaffre [2011]; Ulbrich [2011]
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Some experiments

α = αE . Toy model (Showalter [1984]) Frame I
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Some experiments

α = αE . Toy model (Showalter [1984]) Frame II
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Some experiments

α = αE . Toy model (Showalter [1984]) Frame III
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Some experiments

α = αE . Toy model (Showalter [1984]) Frame IV
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Some experiments

α = αE . Toy model (Showalter [1984]) Frame V
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Some experiments

α = αE . Toy model (Showalter [1984]) Frame VI
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Some experiments

Convergence in u and v for αE

Using τ =
h

10
,

h

100
, h2

error rate error rate error rate

1/h 1/τ Nit eu,2 ru,2 ev ,2 rv ,2 eq rq
256 2560 2 1.03e-02 0.540 1.19e-03 0.785 6.40e-04 1.073
512 5120 2 6.81e-03 0.601 6.73e-04 0.828 3.00e-04 1.094
128 12800 2 1.47e-02 0.546 1.23e-03 0.966 1.48e-03 1.016
256 25600 2 9.69e-03 0.602 6.29e-04 0.961 7.19e-04 1.040

32 1024 2 2.90e-02 0.516 5.25e-03 0.945 5.42e-03 0.800
64 4096 2 1.93e-02 0.591 2.62e-03 1.003 2.78e-03 0.964

(with quasi-norm: ∑n τ
∫

Ω |u−un
h | |v −vn

h |dx , Ebmeyer and Liu [2008]).

Observed rates

eu,2 ≈ O(h1/2), ev ,2 ≈ O(h), eq ≈ O(h)
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Some experiments

α = αMH , v
∗
max ≡ 1. No analytical solution. Frame I
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Some experiments

α = αMH , v
∗
max ≡ 1. No analytical solution. Frame II
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Some experiments

α = αMH , v
∗
max ≡ 1. No analytical solution. Frame III
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Some experiments

α = αMH , v
∗
max ≡ 1. No analytical solution. Frame IV
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Some experiments

α = αMH , v
∗
max ≡ 1. No analytical solution. Frame V
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Some experiments

α = αMH , v
∗
max ≡ 1. No analytical solution. Frame VI
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Some experiments

Convergence in u and v for αMH , v
∗
max ≡ 1.

Using τ =
h

10
,

h

100
, h2

1/h 1/τ Nit eu,2 ru,2 ev ,2 rv ,2 eq rq
256 2560 2 2.14e-03 0.560 8.50e-04 0.760 8.62e-04 0.768
512 5120 2 1.39e-03 0.623 4.86e-04 0.806 4.92e-04 0.810
128 12800 2 1.98e-03 0.559 2.17e-04 0.682 3.33e-04 0.855
256 25600 2 1.31e-03 0.603 1.31e-04 0.725 1.81e-04 0.883

32 1024 2 4.39e-03 0.833 1.31e-03 1.396 1.55e-03 1.287
64 4096 2 2.69e-03 0.705 4.88e-04 1.421 6.57e-04 1.239

Observed rates

eu,2 ≈ O(h1/2), ev ,2 ≈ O(h), eq ≈ O(h)
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Some experiments

α = αMH(x ; ·), v∗max(x) = (1 + x)/2
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Some experiments

Convergence rates in u and v for α = αMH(x ; ·), v∗max(x) = (1 + x)/2

Using τ =
h

10
,

h

100
, h2

1/h 1/τ Nit eu,2 ru,2 ev ,2 rv ,2 eq rq
256 2560 2 5.22e-03 0.551 6.74e-04 0.762 7.27e-04 0.798
512 5120 2 3.44e-03 0.602 3.84e-04 0.810 4.07e-04 0.838
128 12800 2 7.11e-03 0.545 2.47e-04 1.039 6.94e-04 0.986
256 25600 2 4.69e-03 0.601 1.29e-04 0.941 3.45e-04 1.010

32 1024 2 1.43e-02 0.622 1.30e-03 1.262 2.57e-03 0.942
64 4096 2 9.35e-03 0.612 5.52e-04 1.236 1.29e-03 0.997

Observed rates

eu,2 ≈ O(h1/2), ev ,2 ≈ O(h), eq ≈ O(h)

N. L. Gibson (OSU) Methane Hydrate Evolution SIAM AN13 33 / 39



Some experiments

α = αMH(x ; ·), v∗max(x) = (1 + 2x−x2)/2
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Some experiments

Convergence in u and v for α = αMH(x ; ·), v∗max(x) = (1 + 2x−x2)/2

Using τ =
h

10
,

h

100
, h2

1/h 1/τ Nit eu,2 ru,2 ev ,2 rv ,2 eq rq
256 2560 2 3.45e-03 0.561 6.77e-04 0.763 7.07e-04 0.785
512 5120 2 2.27e-03 0.605 3.86e-04 0.811 3.98e-04 0.827
128 12800 2 4.50e-03 0.554 2.19e-04 0.990 5.33e-04 0.967
256 25600 2 2.96e-03 0.604 1.19e-04 0.875 2.68e-04 0.995

32 1024 2 9.18e-03 0.636 1.18e-03 1.330 1.98e-03 1.013
64 4096 2 5.98e-03 0.619 4.86e-04 1.280 9.88e-04 1.000

Observed rates

eu,2 ≈ O(h1/2), ev ,2 ≈ O(h), eq ≈ O(h)
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Some experiments

Convergence in S for α = αMH

Using τ =
h

100

constant affine non-affine
1/h eS ,2 rS ,2 eS ,2 rS ,2 eS ,2 rS ,2
64 2.91e-03 0.537 7.89e-03 0.519 5.27e-03 0.525
128 1.97e-03 0.559 5.41e-03 0.546 3.58e-03 0.556

256 1.30e-03 0.602 3.56e-03 0.600 2.36e-03 0.603

Observed rates

eS ,2 ≈ O(h1/2)

(Similar to rates in u.)
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Conclusions and future work

Summary

We described a solubility constrained methane hydrate model.

We reformulated it into an abstract evolution equation constrained
by parameter-dependent familes of graphs.

One can extend monotone operator theory to case of measureable
family of graphs to show well-posedness.

Regularity of solutions is the same as in the Stefan problem,
at least in the single graph case.

We have proposed a numerical scheme which applies semismooth
Newton to complementarity conditions.

Semismooth Newton solver requires mesh independent iterations.

Convergence rates for examples agree with optimal results for the
Stefan problem.

Incidentally discovered a semismooth Newton method for the
Stefan problem.
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Conclusions and future work

Future work

Implementation and convergence studies for the gas zone.

Include salinity as unknown.

Semi-implicit time stepping.
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