Numerical Modeling of Methane Hydrate Evolution

Nathan L. Gibson Joint work with F. P. Medina, M. Peszynska, R. E. Showalter

Department of Mathematics

SIAM Annual Meeting 2013 Friday, July 12

 * This work was partially supported by NSF DMS-1115827 "Hybrid Modeling in porous media".

N. L. Gibson (OSU)

Methane Hydrate Evolution

SIAM AN13 1 / 39

2 Model Development

- Conservation of mass
- Solubility constraints

Introduction

Model Development 2

- Conservation of mass
- Solubility constraints

Abstract Evolution Equation 3

- Examples
- Analysis

Introduction

Model Development

- Conservation of mass
- Solubility constraints

3 Abstract Evolution Equation

- Examples
- Analysis

4 Numerical aspects

- Fully discrete scheme
- Semismooth Newton solver

Introduction

Model Development

- Conservation of mass
- Solubility constraints

3 Abstract Evolution Equation

- Examples
- Analysis

4 Numerical aspects

- Fully discrete scheme
- Semismooth Newton solver

5 Some experiments

Introduction

Model Development

- Conservation of mass
- Solubility constraints

3 Abstract Evolution Equation

- Examples
- Analysis

4 Numerical aspects

- Fully discrete scheme
- Semismooth Newton solver
- 5 Some experiments
- 6 Conclusions and future work

 Methane hydrates are an ice-like substance containing methane molecules trapped in a lattice of water molecules.

- Methane hydrates are an ice-like substance containing methane molecules trapped in a lattice of water molecules.
- We will consider a simplified model of evolution of methane hydrates in the hydrate zone of the sea-bed.

Methane Hydrate Evolution

N. L. Gibson (OSU)

- Methane hydrates are an ice-like substance containing methane molecules trapped in a lattice of water molecules.
- We will consider a simplified model of evolution of methane hydrates in the hydrate zone of the sea-bed.
- Components:
 - ► CH₄
 - ► *H*₂*O*

*[Images from DOE-NETL]

Conservation of mass for CH₄ component

Let $\Omega \subset \mathbb{R}^3$ be a bounded region of points $x \in \Omega$.

Parameters: (assumed given) ϕ_0 porosity K_0 permeability f_M external source of CH_4

Conservation of mass for CH₄ component

Let $\Omega \subset \mathbb{R}^3$ be a bounded region of points $x \in \Omega$.

Parameters: (assumed given) ϕ_0 porosity K_0 permeability f_M external source of CH_4

Assumptions:

- Pressure P(x) given by hydrostatic gradients
- Temperature T(x) given by geothermal gradients
- High pressure and low temperature imply Hydrate zone: only liquid and hydrate phases present

Conservation of mass for CH₄ component (cont.)

Unknowns:

- S_l , S_h saturations (void fractions), with $S_h = 1 S_l$
- χ_{IM}, χ_{IW}, χ_{IS}, with χ_{IM} + χ_{IW} + χ_{IS} = 1 mass fractions of methane, water and salt in liquid phase

Conservation of mass for CH₄ component (cont.)

Unknowns:

- S_l , S_h saturations (void fractions), with $S_h = 1 S_l$
- χ_{IM} , χ_{IW} , χ_{IS} , with $\chi_{IM} + \chi_{IW} + \chi_{IS}$, = 1 mass fractions of methane, water and salt in liquid phase Note:
 - Salinity, χ_{IS} , assumed known and fixed to that of seawater
 - χ_{hM}, χ_{hW} mass fractions in hydrate phase (assumed known)

Conservation of mass for CH₄ component (cont.)

Unknowns:

- S_l , S_h saturations (void fractions), with $S_h = 1 S_l$
- χ_{IM} , χ_{IW} , χ_{IS} , with $\chi_{IM} + \chi_{IW} + \chi_{IS}$, = 1 mass fractions of methane, water and salt in liquid phase Note:
 - Salinity, χ_{IS} , assumed known and fixed to that of seawater
 - χ_{hM}, χ_{hW} mass fractions in hydrate phase (assumed known)

Conservation of mass for CH₄ component

$$\frac{\partial}{\partial t} (\phi_0 S_I \rho_I \chi_{IM} + \phi_0 S_h \rho_h \chi_{hM}) - \nabla \cdot (D_{IM} \rho_I \nabla \chi_{IM}) = f_M$$
(1)

where densities ρ_l, ρ_h and diffusion D_{IM} are assumed constant.

Unified notation

We redefine parameters

$$R:=\frac{\rho_h\chi_{hM}}{\rho_I}, f:=\frac{f_M}{\rho_I\phi_0}, D_0:=\frac{D_{IM}}{\phi_0},$$

and redefine variables

$$S := S_I, v := \chi_{IM}, u := Sv + R(1-S),$$

so that (1) becomes

$$\frac{\partial u}{\partial t} - \nabla \cdot (D_0 \nabla v) = f, \qquad (2)$$

where we may further scale the problem so that $D_0 = 1$.

Still need $\langle S_I, \chi_{IM} \rangle \in \mathscr{F}(x)$ provided by solubility constraints. First, we assume that the maximum solubility constraint $\chi_{IM}^{\max}(x)$ is given.

Still need $\langle S_I, \chi_{IM} \rangle \in \mathscr{F}(x)$ provided by solubility constraints. First, we assume that the maximum solubility constraint $\chi_{IM}^{max}(x)$ is given.

Then the solubility satisfies a nonlinear complementarity constraint (NCC)

Solubility constraint

$$\begin{cases} \chi_{IM} \leq \chi_{IM}^{\max}, \quad S_I = 1, \\ \chi_{IM} = \chi_{IM}^{\max}, \quad S_I \leq 1, \\ (\chi_{IM}^{\max} - \chi_{IM})(1 - S_I) = 0. \end{cases}$$
(3)

Model DevelopmentSolubility constraintsStill need $\langle S_I, \chi_{IM} \rangle \in \mathscr{F}(x)$ provided by solubility constraints. First, weassume that the maximum solubility constraint $\chi^{max}(x)$ is given

assume that the maximum solubility constraint $\chi_{IM}^{\max}(x)$ is given.

Then the solubility satisfies a nonlinear complementarity constraint (NCC) Solubility constraint $\begin{cases} \chi_{IM} \leq \chi_{IM}^{max}, \quad S_{I} = 1, \\ \chi_{IM} = \chi_{IM}^{max}, \quad S_{I} \leq 1, \qquad (3) \\ (\chi_{IM}^{max} - \chi_{IM})(1 - S_{I}) = 0. \end{cases}$

In our unified notation, we let $v^* = \chi^{\max}_{IM}$, so that

$$\langle v, S \rangle \in \mathscr{F}(x; \cdot) := [0, v^*(x)] \times \{1\} \cup \{v^*(x)\} \times (0, 1]$$

Or equivalently,

$$v \in \alpha_{MH}(x; u) := (u - v^*(x))_- + v^*(x), \ u \le R.$$
 (4)

We consider the initial boundary-value problem

Abstract Evolution Equation

$$\frac{\partial u}{\partial t} - \Delta v = f, \quad v \in \alpha(u) \text{ on } \Omega \times (0, T)$$
$$v = 0 \quad \text{on } \partial\Omega \times (0, T)$$
$$u(\cdot, 0) = u_0(\cdot) \quad \text{on } \Omega.$$

where α is *maximal montone*, or in the case of a measureable family $\{\alpha(x; \cdot) : x \in \Omega\}$, each is a maximal monotone relation.

Abstract Evolution Equation Examples **Examples:** $\alpha(u) = \alpha_S, \alpha_{MH}, \alpha_E, \alpha_W, \alpha_{PM}; Note : \beta(v) = \alpha^{-1}$ Toy models α_F α_{S} Elbow Stefan free-boundary problem: Showalter [1984] $\alpha_{S}(u) = u_{-} + (u - 1)_{\perp}$ α_W α_{MH}

Methane hydrate (our problem): $\alpha_{MH}(x; \cdot) = (u - v^*(x)) + v^*(x), u < R$

R

Porous medium equation:

 $\alpha = \alpha_{PM}(u) = |u| u^{m-1} \ (m > 1 \ \text{slow diffusion}, \ \ 0 < m < 1 \ \text{fast diffusion})$

N. L. Gibson (OSU)

Woble

Abstract Evolution Equation

Examples

 $\alpha = \alpha_{PM}(u) = |u|u^{m-1} \ (m > 1 \text{ slow diffusion}, \ 0 < m < 1 \text{ fast diffusion})$

N. L. Gibson (OSU)

Summary of theoretical results for α_{MH}

- For the single graph case, we represent the non-linearity as a subgradient, and prove a useful comparison principle, which allows to extend the graph of $\beta = \alpha^{-1}$ to one which is affine bounded. Optimal regularity results follow.
 - ▶ Properties of *u*, *v* are the same as those for the Stefan problem.

Summary of theoretical results for α_{MH}

- For the single graph case, we represent the non-linearity as a subgradient, and prove a useful comparison principle, which allows to extend the graph of $\beta = \alpha^{-1}$ to one which is affine bounded. Optimal regularity results follow.
 - ▶ Properties of *u*, *v* are the same as those for the Stefan problem.
- We extend existing theory for *porous medium equation* to cover the case of a measureable family of graphs in order to show well-posedness.
 - Based on a normal convex integrand construction.

Details in Gibson, Medina, Peszynska, and Showalter [2013]

FE formulation for $\alpha = \alpha_{MH}(x, \cdot)$

First, we apply fully implicit time stepping. Let $\mathscr{V}_h \subset \mathscr{V}$ be the finite element space of continuous piecewise linears on triangulation of Ω .

Find $v_h^n \in \mathscr{V}_h$ at $t_n (n > 0)$ $\begin{cases} (u_h^n, \psi) + \tau(\nabla v_h^n, \nabla \psi) = (u_h^{n-1}, \psi) \\ u_h^n \in \beta(v_h^n) \\ (u_h^0, \psi) := (u_0, \psi), \forall \psi \in \mathscr{V}_h \end{cases}$

FE formulation for $\alpha = \alpha_{MH}(x, \cdot)$

First, we apply fully implicit time stepping. Let $\mathscr{V}_h \subset \mathscr{V}$ be the finite element space of continuous piecewise linears on triangulation of Ω .

Find $v_h^n \in \mathscr{V}_h$ at $t_n (n > 0)$ $\begin{cases} (u_h^n, \psi) + \tau(\nabla v_h^n, \nabla \psi) = (u_h^{n-1}, \psi) \\ u_h^n \in \beta(v_h^n) \\ (u_h^0, \psi) := (u_0, \psi), \forall \psi \in \mathscr{V}_h \end{cases}$

Let

$$\begin{split} \mathbf{M} &: \text{ mass matrix} \\ \mathbf{K} &: \text{ stiffness matrix} \\ v_h^n &\approx \mathbf{v}^n \in \mathbb{R}^M \\ u_h^n &\approx \mathbf{u}^n \in \mathbb{R}^M \end{split}$$

 $\mathbf{M}\mathbf{u}^n + \tau \mathbf{K}\mathbf{v}^n = \mathbf{M}\mathbf{u}^{n-1}$

FE formulation for $\alpha = \alpha_{MH}(x, \cdot)$

First, we apply fully implicit time stepping. Let $\mathscr{V}_h \subset \mathscr{V}$ be the finite element space of continuous piecewise linears on triangulation of Ω .

Find
$$v_h^n \in \mathscr{V}_h$$
 at $t_n (n > 0)$

$$\begin{cases}
(u_h^n, \psi) + \tau (\nabla v_h^n, \nabla \psi) = (u_h^{n-1}, \psi) \\
u_h^n \in \beta(v_h^n) \\
(u_h^0, \psi) := (u_0, \psi), \forall \psi \in \mathscr{V}_h
\end{cases}$$

Let **M** : mass matrix **K** : stiffness matrix $v_h^n \approx \mathbf{v}^n \in \mathbb{R}^M$ $u_h^n \approx \mathbf{u}^n \in \mathbb{R}^M$ **Mu**ⁿ + $\tau \mathbf{K} \mathbf{v}^n = \mathbf{M} \mathbf{u}^{n-1}$

 $\label{eq:mass-lumping} \begin{array}{l} \text{Mass-lumping} & \text{allows} \\ \textbf{A}_{\textbf{h}} = \textbf{M}^{-1}\textbf{K} \end{array}$

Fully discrete scheme

$$\begin{cases} \mathbf{u}^n + \tau \mathbf{A}_h \mathbf{v}^n = \mathbf{u}^{n-1} \\ \langle \mathbf{v}_j^n, u_j^n \rangle \in \boldsymbol{\beta}(x_j; \cdot) := \boldsymbol{\beta}_j(\cdot) \end{cases}$$

where the constraint is applied point-wise.

N. L. Gibson (OSU)

Lemma [N.Gibson, P. Medina, M. Peszynska, R.E. Showalter]

For every n > 0 there is a unique solution $\mathbf{v}^n \in \mathbb{R}^M$ of the discrete problem for $\beta = \beta_{MH}(x; \cdot)$ it is the unique minimizer of the appropriate functional $\Psi(\mathbf{v})$ for which the discrete problem is the Euler-Lagrange condition.

Lemma [N.Gibson, P. Medina, M. Peszynska, R.E. Showalter]

For every n > 0 there is a unique solution $\mathbf{v}^n \in \mathbb{R}^M$ of the discrete problem for $\beta = \beta_{MH}(x; \cdot)$ it is the unique minimizer of the appropriate functional $\Psi(\mathbf{v})$ for which the discrete problem is the Euler-Lagrange condition.

Corollary

The discrete scheme is uniquely solvable for each of $\beta = \beta_{MH}(x, \cdot), \beta_S, \beta_E, \beta_W.$

 Newton-type solvers have difficulties near singularties; may not be defined for multi-valued operators.

- Newton-type solvers have difficulties near singularties; may not be defined for multi-valued operators.
- Relaxation solvers require a number of iterations proportional to the number of degrees of freedom.

- Newton-type solvers have difficulties near singularties; may not be defined for multi-valued operators.
- Relaxation solvers require a number of iterations proportional to the number of degrees of freedom.
- In each, optimal convergence results are close to O(h) for v and O(h^{1/2}) for u in L²(Q).

- Newton-type solvers have difficulties near singularties; may not be defined for multi-valued operators.
- Relaxation solvers require a number of iterations proportional to the number of degrees of freedom.
- In each, optimal convergence results are close to O(h) for v and O(h^{1/2}) for u in L²(Q).
- We propose a scheme which does not require regularization and can be applied when neither α nor β are functions.

- Newton-type solvers have difficulties near singularties; may not be defined for multi-valued operators.
- Relaxation solvers require a number of iterations proportional to the number of degrees of freedom.
- In each, optimal convergence results are close to O(h) for v and O(h¹/₂) for u in L²(Q).
- We propose a scheme which does not require regularization and can be applied when neither α nor β are functions.
- The method also applies when constraints are parameterized by x.

Nonlinear Complementarity Problem (NCP)

We represent

 $\langle v, u \rangle \in \beta$

as an NCP-function

$$\phi(u,v)=0.$$

Nonlinear Complementarity Problem (NCP)

We represent

 $\langle v, u \rangle \in \beta$

as an NCP-function

$$\phi(u,v)=0.$$

For example,

 $\langle v, u \rangle \in \beta_{MH} \equiv \phi_{MH}(u, v) := \min(u - v, v^*(x) - v) = 0.$
Nonlinear Complementarity Problem (NCP)

We represent

 $\langle v, u \rangle \in \beta$

as an NCP-function

$$\phi(u,v)=0.$$

For example,

$$\langle v, u \rangle \in \beta_{MH} \equiv \phi_{MH}(u, v) := \min(u - v, v^*(x) - v) = 0.$$

Similarly,

$$\langle v, u \rangle \in \beta_E \equiv \phi_E(u, v) := \min(u, 1 - v) = 0,$$

 $\langle v, u \rangle \in \beta_W \equiv \phi_W(u, v) := \min(1 - u, v) = 0,$
 $\langle v, u \rangle \in \beta_S \equiv \phi_S(u, v) := u - v - \max(0, \min(u, 1)) = 0.$

Semismooth Newton solver

Problem solved at every time step becomes

$$\begin{cases} \mathbf{u} + \tau \mathbf{A}_h \mathbf{v} &= \mathbf{b} \\ \min(u_j - v_j, \mathbf{v}^*(x_j) - v_j) &= 0, \ \forall j \end{cases}$$

Semismooth Newton solver

Problem solved at every time step becomes

It can be shown that

- each of $\phi_{MH}, \phi_E, \phi_W, \phi_S$ is semi-smooth
- the Jacobian is never singular

Semismooth Newton converges superlinearly for these NCC problems

Ben Gharbia, Gilbert, and Jaffre [2011]; Ulbrich [2011]

$\alpha = \alpha_E$. Toy model (Showalter [1984]) Frame I

$\alpha = \alpha_E$. Toy model (Showalter [1984]) Frame II

$\alpha = \alpha_E$. Toy model (Showalter [1984]) Frame III

$\alpha = \alpha_E$. Toy model (Showalter [1984]) Frame IV

$\alpha = \alpha_E$. Toy model (Showalter [1984]) Frame V

$\alpha = \alpha_E$. Toy model (Showalter [1984]) Frame VI

$\alpha = \alpha_E$. Toy model (Showalter [1984])

N. L. Gibson (OSU)

Methane Hydrate Evolution

SIAM AN13 22 / 39

Convergence in *u* and *v* for α_E

Using
$$au = rac{h}{10}, rac{h}{100}, h^2$$

			error	rate	error	rate	error	rate
1/h	1/ au	N _{it}	<i>e</i> _{<i>u</i>,2}	<i>r</i> _{<i>u</i>,2}	<i>e</i> _{v,2}	<i>r</i> _{v,2}	eq	r _q
256	2560	2	1.03e-02	0.540	1.19e-03	0.785	6.40e-04	1.073
512	5120	2	6.81e-03	0.601	6.73e-04	0.828	3.00e-04	1.094
128	12800	2	1.47e-02	0.546	1.23e-03	0.966	1.48e-03	1.016
256	25600	2	9.69e-03	0.602	6.29e-04	0.961	7.19e-04	1.040
32	1024	2	2.90e-02	0.516	5.25e-03	0.945	5.42e-03	0.800
64	4096	2	1.93e-02	0.591	2.62e-03	1.003	2.78e-03	0.964

(with quasi-norm: $\sum_{n} \tau \int_{\Omega} |u - u_{h}^{n}| |v - v_{h}^{n}| dx$, Ebmeyer and Liu [2008]).

Observed rates

$$e_{u,2} pprox O(h^{1/2}), \quad e_{v,2} pprox O(h), \quad e_q pprox O(h)$$

$\alpha = \alpha_{MH}, v_{max}^* \equiv 1$. No analytical solution. Frame I

$\alpha = \alpha_{MH}, v_{max}^* \equiv 1$. No analytical solution. Frame II

$\alpha = \alpha_{MH}, v_{max}^* \equiv 1$. No analytical solution. Frame III

$\alpha = \alpha_{MH}, v_{max}^* \equiv 1$. No analytical solution. Frame IV

$\alpha = \alpha_{MH}, v_{max}^* \equiv 1$. No analytical solution. Frame V

N. L. Gibson (OSU)

SIAM AN13 28 / 39

$\alpha = \alpha_{MH}, v_{max}^* \equiv 1$. No analytical solution. Frame VI

$\alpha = \alpha_{MH}, v_{max}^* \equiv 1$. No analytical solution.

Convergence in *u* and *v* for α_{MH} , $v_{max}^* \equiv 1$.

Using
$$\tau = \frac{h}{10}, \frac{h}{100}, h^2$$

1/h	1/ au	N _{it}	<i>e</i> _{<i>u</i>,2}	<i>r</i> _{<i>u</i>,2}	<i>e</i> _{v,2}	<i>r</i> _{v,2}	e_q	r _q
256	2560	2	2.14e-03	0.560	8.50e-04	0.760	8.62e-04	0.768
512	5120	2	1.39e-03	0.623	4.86e-04	0.806	4.92e-04	0.810
128	12800	2	1.98e-03	0.559	2.17e-04	0.682	3.33e-04	0.855
256	25600	2	1.31e-03	0.603	1.31e-04	0.725	1.81e-04	0.883
32	1024	2	4.39e-03	0.833	1.31e-03	1.396	1.55e-03	1.287
64	4096	2	2.69e-03	0.705	4.88e-04	1.421	6.57e-04	1.239

Observed rates

$$e_{u,2} pprox O(h^{1/2}), \quad e_{v,2} pprox O(h), \quad e_q pprox O(h)$$

$\alpha = \alpha_{MH}(x;\cdot), v_{\max}^*(x) = (1+x)/2$

Convergence rates in *u* and *v* for $\alpha = \alpha_{MH}(x; \cdot), v^*_{max}(x) = (1+x)/2$

Using
$$\tau = \frac{h}{10}, \frac{h}{100}, h^2$$

1/h	1/ au	N _{it}	<i>e</i> _{<i>u</i>,2}	<i>r</i> _{<i>u</i>,2}	<i>e</i> _{v,2}	<i>r</i> _{v,2}	e_q	r _q
256	2560	2	5.22e-03	0.551	6.74e-04	0.762	7.27e-04	0.798
512	5120	2	3.44e-03	0.602	3.84e-04	0.810	4.07e-04	0.838
128	12800	2	7.11e-03	0.545	2.47e-04	1.039	6.94e-04	0.986
256	25600	2	4.69e-03	0.601	1.29e-04	0.941	3.45e-04	1.010
32	1024	2	1.43e-02	0.622	1.30e-03	1.262	2.57e-03	0.942
64	4096	2	9.35e-03	0.612	5.52e-04	1.236	1.29e-03	0.997

Observed rates

$$e_{u,2} pprox O(h^{1/2}), \quad e_{v,2} pprox O(h), \quad e_q pprox O(h)$$

 $\alpha = \alpha_{MH}(x; \cdot), v_{max}^*(x) = (1 + 2x - x^2)/2$

Convergence in *u* and *v* for $\alpha = \alpha_{MH}(x; \cdot), v_{max}^*(x) = (1 + 2x - x^2)/2$

Using
$$\tau = \frac{h}{10}, \frac{h}{100}, h^2$$

1/h	1/ au	N _{it}	<i>e</i> _{<i>u</i>,2}	<i>r</i> _{<i>u</i>,2}	<i>e</i> _{v,2}	<i>r</i> _{v,2}	e_q	r _q
256	2560	2	3.45e-03	0.561	6.77e-04	0.763	7.07e-04	0.785
512	5120	2	2.27e-03	0.605	3.86e-04	0.811	3.98e-04	0.827
128	12800	2	4.50e-03	0.554	2.19e-04	0.990	5.33e-04	0.967
256	25600	2	2.96e-03	0.604	1.19e-04	0.875	2.68e-04	0.995
32	1024	2	9.18e-03	0.636	1.18e-03	1.330	1.98e-03	1.013
64	4096	2	5.98e-03	0.619	4.86e-04	1.280	9.88e-04	1.000

Observed rates

$$e_{u,2} pprox O(h^{1/2}), \quad e_{v,2} pprox O(h), \quad e_q pprox O(h)$$

Convergence in *S* for $\alpha = \alpha_{MH}$

Using
$$au = rac{h}{100}$$

	const	tant	affi	ne	non-affine		
1/h	e _{5,2}	r _{5,2}	e _{5,2}	r _{5,2}	e _{5,2}	r _{5,2}	
64	2.91e-03	0.537	7.89e-03	0.519	5.27e-03	0.525	
128	1.97e-03	0.559	5.41e-03	0.546	3.58e-03	0.556	
256	1.30e-03	0.602	3.56e-03	0.600	2.36e-03	0.603	

Observed rates

$$e_{S,2} \approx O(h^{1/2})$$

(Similar to rates in *u*.)

• We described a solubility constrained methane hydrate model.

- We described a solubility constrained methane hydrate model.
- We reformulated it into an abstract evolution equation constrained by parameter-dependent familes of graphs.

- We described a solubility constrained methane hydrate model.
- We reformulated it into an abstract evolution equation constrained by parameter-dependent familes of graphs.
- One can extend monotone operator theory to case of measureable family of graphs to show well-posedness.

- We described a solubility constrained methane hydrate model.
- We reformulated it into an abstract evolution equation constrained by parameter-dependent familes of graphs.
- One can extend monotone operator theory to case of measureable family of graphs to show well-posedness.
- Regularity of solutions is the same as in the Stefan problem, at least in the single graph case.

- We described a solubility constrained methane hydrate model.
- We reformulated it into an abstract evolution equation constrained by parameter-dependent familes of graphs.
- One can extend monotone operator theory to case of measureable family of graphs to show well-posedness.
- Regularity of solutions is the same as in the Stefan problem, at least in the single graph case.
- We have proposed a numerical scheme which applies semismooth Newton to complementarity conditions.

- We described a solubility constrained methane hydrate model.
- We reformulated it into an abstract evolution equation constrained by parameter-dependent familes of graphs.
- One can extend monotone operator theory to case of measureable family of graphs to show well-posedness.
- Regularity of solutions is the same as in the Stefan problem, at least in the single graph case.
- We have proposed a numerical scheme which applies semismooth Newton to complementarity conditions.
- Semismooth Newton solver requires mesh independent iterations.

- We described a solubility constrained methane hydrate model.
- We reformulated it into an abstract evolution equation constrained by parameter-dependent familes of graphs.
- One can extend monotone operator theory to case of measureable family of graphs to show well-posedness.
- Regularity of solutions is the same as in the Stefan problem, at least in the single graph case.
- We have proposed a numerical scheme which applies semismooth Newton to complementarity conditions.
- Semismooth Newton solver requires mesh independent iterations.
- Convergence rates for examples agree with optimal results for the Stefan problem.

- We described a solubility constrained methane hydrate model.
- We reformulated it into an abstract evolution equation constrained by parameter-dependent familes of graphs.
- One can extend monotone operator theory to case of measureable family of graphs to show well-posedness.
- Regularity of solutions is the same as in the Stefan problem, at least in the single graph case.
- We have proposed a numerical scheme which applies semismooth Newton to complementarity conditions.
- Semismooth Newton solver requires mesh independent iterations.
- Convergence rates for examples agree with optimal results for the Stefan problem.
- Incidentally discovered a semismooth Newton method for the Stefan problem.

Future work

• Implementation and convergence studies for the gas zone.

- Implementation and convergence studies for the gas zone.
- Include salinity as unknown.

- Implementation and convergence studies for the gas zone.
- Include salinity as unknown.
- Semi-implicit time stepping.

References

- I. Ben Gharbia, J. C. Gilbert, and J. Jaffre. Nonlinear complementarity constraints for two-phase flow in porous media with gas phase appearance and disappearance. *Numerical approximation of hysteresis problems*, 2011.
- C. Ebmeyer and W. B. Liu. Finite element approximation of the fast diffusion and the porous medium equations. *SIAM J. Numer. Anal.*, 46(5):2393–2410, 2008.
- N. L. Gibson, F. P. Medina, M. Peszynska, and R. E. Showalter. Evolution of phase transitions in methane hydrate. *To appear in Journal of Mathematical Analysis and Applications*, 2013.
- R. H. Nochetto and C. Verdi. Approximation of degenerate parabolic problems using numerical integration. SIAM J. Numer. Anal., 25(4):784–814, 1988.
- J. Rulla. Error analysis for implicit approximations to solutions to Cauchy problems. SIAM J. Numer. Anal., 33(1):68–87, 1996.
- R. E. Showalter. A singular quasilinear diffusion equation in L¹. J. Math. Soc. Japan, 36(2): 177–189, 1984.
- R. E. Showalter. *Monotone operators in Banach space and nonlinear partial differential equations*, volume 49 of *Mathematical Surveys and Monographs*. American Mathematical Society, Providence, RI, 1997.
- Michael Ulbrich. Semismooth Newton methods for variational inequalities and constrained optimization problems in function spaces, volume 11 of MOS-SIAM Series on Optimization. SIAM, Philadelphia, PA, 2011.