1. Use Gaussian elimination to find the LU factorization of

(a)

\[A = \begin{bmatrix} 1 & 1/2 & 1/3 \\ 1/2 & 1/3 & 1/4 \\ 1/3 & 1/4 & 1/5 \end{bmatrix} \]

(without pivoting)

(b)

\[A = \begin{bmatrix} 2 & 2 & 4 \\ 1 & 1 & -3 \\ -1 & 1 & 1 \end{bmatrix} \]

(with pivoting)

2. (551): Suppose the \(m \times m \) matrix \(A \) has a partitioning

\[A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \]

where \(A_{11} \) is a non-singular \(n \times n \) matrix and \(A_{22} \) is \((m - n) \times (m - n) \). Find the block LU factorization of the matrix \(A \). Verify your answer by multiplying \(LU \) to get \(A \). Note that the resulting \(U_{22} \) is known as the Schur complement of \(A_{11} \) in \(A \).

3. TB #21.1

4. TB #23.1