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Abstract

We consider numerical methods for finding approximate solutions
to Ordinary Differential Equations (ODEs) with parameters distributed
with some probability by the Generalized Polynomial Chaos (GPC)
approach. In particular, we consider those with forcing functions that
have a random parameter in both the scalar and vector case. We then
consider linear systems of ODEs with deterministic forcing and ran-
domness in the matrix of the systems and conclude with a method
of approximating solutions to the case where the system involves a
nonlinear function of a matrix and a random variable.
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1 Introduction

There are many instances where one desires to model a physical system
where heterogeneous micro-scale structures are present. One example of this
is found in the modeling of movement of matter through porous soils with
spatially dependent soil properties [4]. Another example is the propagation
of electromagnetic waves through a dielectric material with variability in the
relaxation time [2]. A major challenge in modeling such systems is that the
parameters of the model vary according to the heterogeneities present. Thus
any fixed value of the parameter used in the model is accompanied by an
uncertainty for that value. One approach to dealing with this uncertainty is
to use statistical sampling to approximate the expected values of the model
parameters and to use these expected values in a deterministic model. The
simulations needed for such an approach, however, can be expensive. Another
approach to developing models that include uncertainty is by modeling the
uncertain parameters with random variables from some probability distribu-
tion. One such approach called Polynomial Chaos was pioneered by Wiener
and has been extended in recent years to the Generalized Polynomial Chaos
(GPC) approach by Xiu and Karniadakis [9].

In the present paper we discuss the application of the GPC approach
to models involving Ordinary Differential Equations (ODEs) with random
parameters. We develop methods for approximating solutions to several types
of these models including an extension of the work done in dealing with
systems of ODEs with random forcing functions in [7]. We conclude the
paper with a method of approximating the solution of a system of ODEs
involving a nonlinear function that depends both on a random variable and
a deterministic matrix.

2 Preliminaries: Polynomial Chaos, Orthog-

onal Polynomials, and Random Variables

Here we present a basic overview of several results from the literature on
orthogonal polynomials, polynomial chaos, and random variables. The dis-
cussion here is intended to serve as a reference for the reader throughout the
paper. Those interested in pursuing these topics further or more rigorously
will be aided by the works listed in the References.
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2.1 Orthogonal Polynomials

A system of orthogonal polynomials is a set of polynomials {ϕn}n∈N
with N ⊂ N and deg(ϕn) = n that are orthogonal over a domain S with
respect to a positive measure W [8]. That is for each n, m ∈ N we require∫

S

ϕn(x)ϕm(x) dW (x) = γ2
nδm,n

where δm,n is the Kronecker delta

δm,n :=

{
1, m = n
0, m 6= n

(1)

and γn is a real number called the weight of the polynomial ϕn. For the
purposes of this paper we make some simplifying assumptions. We assume
the domain S is a subset of R and that dW (x) = W (x) dx for all x belonging
to S (the slight abuse of notation will cause no difficulties) for some function
W , which we call the weight function. We also assume that our system
of orthogonal polynomials is indexed by the natural numbers (N=N). With
these assumption we define the inner product of two polynomials ϕn and
ϕm as

〈ϕn, ϕm〉 :=

∫
S

ϕn(x)ϕm(x)W (x) dx. (2)

This provides us with the alternate characterization of orthogonality that for
each n, m ∈ N we require

〈ϕn, ϕm〉 = γ2
nδm,n.

And this tells us how to determine each weight γn

γn =
√
〈ϕn, ϕn〉.

Another characterization of orthogonal polynomials is by their basic recur-
sion relation [8]

ξϕn(ξ) = anϕn−1(ξ) + bnϕn(ξ) + cnϕn+1(ξ) (3)

where the real numbers an, bn, and cn are called the basic recursion co-
efficients of the system of orthogonal polynomials. The term “basic” in
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the definitions of the recursion relation and coefficients is non-standard, and
we use it here to emphasize the difference between these and similar terms
appearing later in this paper. We now show how to make use of orthogo-
nal polynomials by using them as a basis for expanding functions of random
variables.

2.2 Generalized Polynomial Chaos Expansions

Suppose ξ is a random variable from some known distribution on S and
{ϕn}n∈N is a complete system of orthogonal polynomial functions of ξ. Sup-
pose also that u : Ω → R, where Ω = [0,∞) × S. If for each t from [0,∞),
u(t, ·) is an L2(S) function, then u admits of the following Weiner-Askey
Generalized Polynomial Chaos (GPC) expansion on Ω

u(t, ξ) =
∞∑

n=0

un(t)ϕn(ξ) (4)

where the convergence for each t is in the L2(S) sense [8, 9]. The coefficient
functions un are called the modes of the expansion and are given by

un(t) :=
〈u, ϕn〉

γ2
n

. (5)

The expected value µu and the variance σ2
u of u are given by [1]

µu(t) = u0(t),

σ2
u(t) =

∞∑
n=0

γ2
nun(t). (6)

We now give details for the distributions and systems of orthogonal polyno-
mials that we consider in this paper.

2.3 The Beta Distribution and Jacobi Polynomials

In what follows we state results for a specific distribution and system of
polynomials. Although these results apply more generally to several different
distributions and their corresponding orthogonal systems of polynomials, we
focus on a specific case for the sake of concreteness. For our purposes we
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assume the random variable ξ comes from the Beta distribution on [−1, 1]
with shape parameters a and b. This assumption suffices for the cases we are
interested in here, since we are considering random variables distributed on
some closed interval [c, d], which we bijectively map to [−1, 1]. Assuming we
begin with ω distributed on [c, d], these maps are

ξ =
c + d

2
+ ω

d− c

2
,

ω = ξ
2

d− c
− d + c

d− c
. (7)

We also may refer to ω as the result of a shifting by m and a scaling by r of
a random variable ξ. That is

ω = rξ + m. (8)

We indicate that the random variable ξ belongs to the Beta distribution with
shape parameters a and b with the notation

ξ ∼ B(a, b).

The associated probability density function (PDF) P for the Beta dis-
tribution is is given by [6]

P (ξ; a, b) =
1

Beta(a + 1, b + 1)

(ξ + 1)b(1− ξ)a

2a+b+1

where

Beta(p, q) :=
Γ(p)Γ(q)

Γ(p + q)
,

Γ(p) :=

∫ ∞

0

xp−1e−x dx.

Figure 1 shows PDFs for Beta distributions with three different choices of
shape parameters.

As discussed in [9], the choice of the system of orthogonal polynomials for
the expansion in (4) is dictated by the Asky scheme. In short, given a random
variable from a known distribution, the Asky scheme provides the choice
of a system of orthogonal polynomials based on a correspondence between
the weight function of the polynomials and the PDF of the distribution so
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Figure 1: PDFs for example Beta distributions

that the optimal rate of convergence of the GPC expansion is achieved. For
ξ ∼ B(a, b) the Asky scheme leads to the choice of Jacobi polynomials on
[−1, 1] for the system of orthogonal polynomials. These polynomials are
characterized by the following weight function, weights, and basic recursion
coefficients

W (ξ) = (1− ξ)a(1 + ξ)b,

γ2
n =

2a+b+1

2n + a + b + 1

Γ(n + a + 1)Γ(n + b + 1)

n!Γ(n + a + b + 1)
,
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and

an =
2(n + a)(n + b)

(2n + a + b)(2n + a + b + 1)
,

bn =
b2 − a2

(2n + a + b)(2n + a + b + 2)
,

cn =
2(n + 1)(n + a + b + 1)

(2n + a + b + 1)(2n + a + b + 2)
. (9)

Here are the first three Jacobi polynomials for reference

ϕ0(ξ) = 1,

ϕ1(ξ) =
1

2
[2(a + 1) + (a + b + 2)(ξ − 1)],

ϕ2(ξ) =
1

8
[4(a + 1)(a + 2) + 4(a + b + 3)(a + 2)(ξ − 1)

+ (a + b + 3)(a + b + 4)(ξ − 1)2].

We have now finished introducing the basic tools that we shall use throughout
the subsequent sections of this paper. Next we discuss the matrices that arise
in our later work.

3 The Matrices We Love and Why We Love

Them

We make use of matrices whenever possible in the following discussions to
simplify the presentation and clarify relationships. This section introduces
several important matrices appearing throughout the rest of this paper. Sev-
eral results pertaining to them are also given for later reference.
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3.1 The Matrix of Basic Recursion Coefficients

Using (9) with n = 0, 1, . . . , Q, we define the matrix of basic recursion
coefficients of the Jacobi polynomials up to the Qth level of recursion

MQ :=


b0 a1 0 . . . 0

c0 b1
. . .

...

0 c1
. . . aQ−1 0

...
. . . bQ−1 aQ

0 . . . 0 cQ−1 bQ

 ∈ RQ+1×Q+1. (10)

In the literature, the matrix of basic recursion coefficients is also known as
the Jacobi matrix [3]. Note that the eigenvalues of MQ are the roots of the
Jacobi polynomial ϕQ+1. This polynomial has Q + 1 distinct real roots and
these are located in the interval [−1, 1].

The matrix of basic recursion coefficients in (10) forms the basis of much
of what comes later. Notice that the basic recursion relation (9) expresses the
multiplication of ϕn by ξ as a linear combination of the Jacobi polynomials
of one degree smaller and one degree greater than ϕn along with ϕn itself.
The coefficients of this linear combination are the basic recursion coefficients
(9). We want to extend this notion by expressing the multiplication of ϕn by
ξk for k ∈ N as a linear combination of Jacobi polynomials. We will call the
coefficients in such a linear combination general recursion coefficients.

3.2 General Recursion Coefficients

The general recursion coefficient of ϕn+j in the recursion for ξkϕn is

labeled C
(j)
n,k and we define this by the relationship

ξkϕn = C
(−k)
n,k ϕn−k + C

(1−k)
n,k ϕn+(1−k) + . . .

+ C
(0)
n,kϕn + · · ·+ C

(k−1)
n,k ϕn+(k−1) + C

(k)
n,kϕn+k

=
k∑

j=−k

C
(j)
n,kϕn+j. (11)

To get a firm understanding of what the general recursion coefficients are,
let us examine in detail the first couple of steps of the recursive process that
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leads to (11). We begin with the basic recursion relation from (3)

ξϕn(ξ) = anϕn−1(ξ) + bnϕn(ξ) + cnϕn+1(ξ).

Comparing this with (11) with k = 1, we see that C
(−1)
n,1 = an, C

(0)
n,1 = bn,

and C
(1)
n,1 = cn. To get C

(j)
n,k for k = 2, we multiply both sides of the basic

recursion relationship by ξ and obtain

ξ2ϕn(ξ) = an[ξϕn−1(ξ)] + bn[ξϕn(ξ)] + cn[ξϕn+1(ξ)].

Now we apply the basic recursion relation again to each bracketed term and
we have

ξϕn−1(ξ) = an−1ϕn−2(ξ) + bn−1ϕn−1(ξ) + cn−1ϕn(ξ)

ξϕn(ξ) = anϕn−1(ξ) + bnϕn(ξ) + cnϕn+1(ξ)

ξϕn+1(ξ) = an+1ϕn(ξ) + bn+1ϕn+1(ξ) + cn+1ϕn+2(ξ).

Substituting these expressions and writing the result in ascending order of
the index of the polynomials results in

ξ2ϕn(ξ) = anan−1ϕn−2(ξ) + an(bn−1 + bn)ϕn−1(ξ) + (ancn−1 + b2
n + an+1cn)ϕn(ξ)

+ cn(bn + bn+1)ϕn+1(ξ) + cncn+1ϕn+2(ξ).

From this we can identify the values of the general recursion coefficients for
the k = 2 case as

C
(−2)
n,2 = anan−1

C
(−1)
n,2 = an(bn−1 + bn)

C
(0)
n,2 = ancn−1 + b2

n + an+1cn

C
(1)
n,2 = cn(bn + bn+1)

C
(2)
n,2 = cncn+1.

In principle the general recursion coefficients C
(j)
n,k can be generated by re-

peated application of the basic recursion relation as was done for the case
when k = 2. With this approach, however, the calculations quickly become
computationally intensive and difficult to manage. We introduce shortly an
approach to finding these coefficients that involves simple matrix multiplica-
tion. In the definition of the general recursion coefficients ξkϕn is expressed
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as a linear combination of the k polynomials immediately preceding ϕn and
the k polynomials immediately following ϕn along with ϕn itself. Also note
that the definition of the general recursion coefficient implies that C

(j)
n,k = 0,

for |j| > k. The following matrix is a convenient way of keeping track of our
newly defined general recursion coefficients.

3.3 The Matrix of General Recursion Coefficients

Let k,Q ∈ N be fixed. We define the matrix of general recursion coef-
ficients corresponding to k and Q as

WQ,k :=


C

(0)
0,k C

(−1)
1,k . . . C

(−Q)
Q,k

C
(1)
0,k C

(0)
1,k . . . C

(1−Q)
Q,k

...
...

. . .
...

C
(Q)
0,k C

(Q−1)
1,k . . . C

(0)
Q,k

 ∈ RQ+1×Q+1. (12)

In the following lemma we give a simple way of generating the matrix of
general recursion coefficients by powers of the matrix of basic recursion co-
efficients.

Lemma 3.1. The matrix WQ,k is the top left sub-matrix of Mk
Q+1. In Mat-

lab notation we have

WQ,k = Mk
Q+1(0 : Q, 0 : Q).

Remark 3.1. Notice that in Lemma 3.1 we begin with a matrix MQ+1 that
is one row and column larger than the size of WQ,k. This is only because the

element C
(0)
Q,k in the last row depends on these additional quantities.

The general recursion coefficients C
(j)
n,k with j = −n arise later in the

paper. Because these coefficients explicitly depend on only two indices, we
make the following simplifying definition

Cn,k := C
(−n)
n,k . (13)

We take advantage of matrix notation once again and define the matrix
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CQ ∈ RQ+1×Q+1 of general recursion coefficients Cn,k with 0 ≤ n, k ≤ Q as

CQ :=


C0,0 C0,1 . . . C0,Q

C1,0 C1,1 . . . C1,Q
...

...
. . .

...
CQ,0 CQ,1 . . . CQ,Q

 =


C0,0 C0,1 C0,2 . . . C0,Q

0 C1,1 C1,2 . . . C1,Q
... 0

. . .
...

...
. . . . . .

...
0 . . . . . . 0 CQ,Q

 .

(14)

The upper-triangular shape of CQ follows from the remark above that C
(j)
n,k =

0 for |j| > k.
In the following lemma we show how to obtain the matrix CQ by iterating

through the matrices WQ,j, for j = 0, 1, . . . , Q and extracting one column of
CQ at each step of the iterative process.

Lemma 3.2. The jth column of CQ is given by the first row of WQ,j. De-

noting the jth column of CQ by C
[j]
Q and the standard unit (column) vector

in RQ+1 as ê1 we have

C
[j]
Q = (WQ,j)

T ê1

= (M j
Q)T ê1.

Remark 3.2. We note that the larger sized M matrix in the definition of W
is not required in this context due to the fact that we only use the top row of
W , and not the last row as referred to in Remark 3.1.

In the next two lemmas we show some important relationships between
general recursion coefficients and inner products of certain orthogonal poly-
nomials. Lemma 3.3 deals with the particular type of general recursion co-
efficients from (13).

Lemma 3.3. Let n, k ∈ N be given. Then

〈ξk, ϕn〉 = γ2
0Cn,k.

Proof. Let n, k ∈ N be given. Then from the definition of C
(j)
n,k in (11), the
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definition of Kronecker delta in (1), and the fact that ϕ0 ≡ 1 we have

〈ξk, ϕn〉 =

∫ 1

−1

ξkϕn(ξ) dW (ξ)

=

∫ 1

−1

k∑
j=−k

C
(j)
n,kϕn+j(ξ) dW (ξ)

=
k∑

j=−k

C
(j)
n,k〈ϕn+j, ϕ0〉

= γ2
0

k∑
j=−k

C
(j)
n,kδn+j,0.

= γ2
0Cn,k.

Lemma 3.4 below generalizes the previous lemma and shows the connec-
tion between inner products and the general recursion coefficients in (11).

Lemma 3.4. Let Q, k ∈ N be given. Then for any n, m ∈ N with 0 ≤ n, m ≤
Q we have

〈ξkϕm, ϕn〉 = γ2
mC

(m−n)
n,k .

Proof. Fix Q, k ∈ N. Then we have

〈ξkϕm, ϕn〉 =

∫ 1

−1

ξkϕn(ξ)ϕm(ξ) dW (ξ)

=

∫ 1

−1

k∑
j=−k

C
(j)
n,kϕn+j(ξ)ϕm(ξ) dW (ξ)

=
k∑

j=−k

C
(j)
n,k〈ϕn+j, ϕm〉

= γ2
m

k∑
j=−k

C
(j)
n,kδn+j,m

= γ2
mC

(m−n)
n,k .
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Note that Lemma 3.3 is a special case of Lemma 3.4 where m = 0.
We have now discussed all of the matrices and the associated lemmas that

are essential to the methods we propose for solving ODEs in the remainder
of this work. Before moving on, we introduce a useful operation on matrices
and state an important theorem related to this operation.

3.4 The Kronecker Product

Let A ∈ Rm×n and B ∈ Rp×q. The Kronecker Product of A with B is the
matrix

A⊗B =

 a1,1B . . . a1,nB
...

. . .
...

am,1B . . . am,nB

 ∈ Rmp×nq.

Theorem 3.5. Let A ∈ Rn×n and B ∈ Rm×m. If λ is an eigenvalue of
A with corresponding eigenvector x and µ is an eigenvalue of B with corre-
sponding eigenvector y, then λµ is an eigenvalue of A⊗B with corresponding
eigenvector x⊗ y.

A proof of the theorem appears in [5]. We now proceed to apply the tools
developed above to solving ordinary differential equations with a random
parameter.

4 First Order Linear Scalar ODE

The remainder of the paper is concerned with the solution of ODEs involving
a random parameter ξ ∼ B(a, b). This section deals with the first order linear
scalar ODE

u̇ + κu = g

where κ is a fixed real number. We refer to the function g on the right hand
side of this ODE as the forcing function, which we assume is known and
depends explicitly on the random parameter and an independent variable t.
The discussion here is closely related to the work done in [7] for functions
with random amplitudes.
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Here we use a GPC approach and develop a method of finding the modes
of the GPC expansion of a function u that solves the first order linear scalar
ODE above. We begin with the initial value problem (IVP){

u̇ + κu = g(t, ξ), t > 0
u(0) = α

. (15)

The dependence of the forcing function g on ξ implies a dependence of u on
ξ as well. Under the assumptions in the paragraph preceding (4) we expand
u and g using Jacobi polynomials in the GPC expansion defined there. We
truncate these expansions at the Qth degree polynomial to obtain

u(t, ξ) ≈ uQ(t, ξ) :=

Q∑
n=0

uQ
n (t)ϕn(ξ),

u̇(t, ξ) ≈ u̇Q(t, ξ) :=

Q∑
n=0

u̇Q
n (t)ϕn(ξ),

g(t, ξ) ≈ gQ(t, ξ) :=

Q∑
n=0

gn(t)ϕn(ξ).

(16)

We substitute the truncated expansions (16) into the ODE in (15)

Q∑
n=0

u̇Q
n (t)ϕn(ξ) + κ

Q∑
n=0

uQ
n (t)ϕn(ξ) =

Q∑
n=0

gn(t)ϕn(ξ). (17)

Formally, gn is the nth mode of the expansion of g as defined in (5), while
uQ is the resulting solution of the ODE system given the level Q trunction
in the expansion of random inputs. Thus the GPC coefficients of uQ may
depend on Q (indicated by the superscript). In the case of random forcing,
we shall see that the modes of uQ will not depend on Q and thus we drop
the superscript.

We next take advantage of the orthogonality of the polynomial basis of
the GPC expansion to eliminate the random variable ξ and obtain a system
of ODEs for the modes of the GPC expansions. First we multiply each side
of (17) by an arbitrary degree m Jacobi polynomial ϕm(ξ) where 0 ≤ m ≤ Q

Q∑
n=0

u̇n(t)ϕn(ξ)ϕm(ξ) + κ

Q∑
n=0

un(t)ϕn(ξ)ϕm(ξ) =

Q∑
n=0

gn(t)ϕn(ξ)ϕm(ξ)
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We then integrate the sums in the resulting equation term by term with
respect to dW and we rewrite the integrals as the equivalent inner products

Q∑
n=0

u̇n(t)〈ϕn, ϕm〉+ κ

Q∑
n=0

un(t)〈ϕn, ϕm〉 =

Q∑
n=0

gn(t)〈ϕn, ϕm〉.

Next we use the definition of the inner product in (2) to arrive at

Q∑
n=0

u̇n(t)δn,m + κ

Q∑
n=0

un(t)δn,m =

Q∑
n=0

gn(t)δn,m.

We now let m = 0, 1, . . . , Q in this equation and obtain a system of decoupled,
deterministic ODEs in the variable t for the modes of the GPC expansion.
For any n = 0, 1, . . . , Q we refer to the corresponding ODE involving the
mode un as the nth modal equation

u̇n(t) + κun(t) = gn(t). (18)

The initial condition corresponding to the nth modal equation is found using
the definition of the nth mode of u in (5). If the initial value in (15) is given
as u(0) = α then we have un(0) = 〈α, ϕn〉/γ2

n = αδn,0. We then solve these
modal initial value problems for n = 0, 1, . . . , Q and in so doing obtain the
modes of u. We can also express the decoupled system of modal equations
in vector form

ẇQ(t) + κwQ(t) = gQ(t)

where the vectors here are defined as

wQ(t) :=

 u0(t)
...

uQ(t)

 ,

gQ(t) :=

 g0(t)
...

gQ(t)

 .

Recall that the right hand side function gn in the nth modal equation is
called the nth mode of g in its GPC expansion and is given by

gn(t) :=
〈g, ϕn〉

γ2
n

. (19)
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To solve a given modal equation we must first evaluate the inner product in
(19) to get the right hand side. In the absence of an exact analytical solution
for the integral that defines gn, we need an accurate and efficient way to
approximate this function. One method of approximating gn is by numerical
quadrature. We note that the integration in (19) is with respect to ξ and
needs to be computed not once, but at each value of t that un(t) is needed.
As an alternative for a certain class of functions, we shall explore a method
of computing the inner products in (19) indirectly by making further use of
the orthogonality of the Jacobi polynomials.

Suppose the function g has a series expansion in a basis of polynomials
in ξ. In practice we will truncate the full series to obtain a finite sum and
arrange in ascending powers of ξ so that the truncation of this expansion of
g takes the standard form

g(t, ξ) ≈ gN(t, ξ) :=
N∑

k=0

Gk(t)ξ
k. (20)

Substituting the approximation in (20) into the inner product in (19) and
using Lemma 3.3 gives an approximation gN

n to the nth mode gn in the GPC
expansion of g

gn(t) ≈ gN
n (t) :=

〈
∑N

k=0 Gk(t)ξ
k, ϕn〉

γ2
n

=
N∑

k=0

〈ξk, ϕn〉
γ2

n

Gk(t)

=
γ2

0

γ2
n

N∑
k=0

Cn,kGk(t).

Using this approximation for the right hand side in the modal equations (18)
gives an approximation uN

n for each mode un by solving the following ODEs,
which we shall refer to as the approximate modal equations

u̇N
n (t) + κuN

n (t) = gN
n (t)

=
γ2

0

γ2
n

N∑
k=0

Cn,kGk(t).
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Because Cn,k = C
(−n)
n,k = 0 for n > k, we have zero right hand side for

the approximate modal equations when n > Q. Thus we gain no additional
information by taking Q > N . In the following discussion we assume N = Q.
The matrix-vector form of the system that results by letting n = 0, 1, . . . , Q
in the approximate modal equations is

ẇQ(t) + κwQ(t) = γ2
0Γ
−2
Q CQGQ(t) (21)

where the vectors wQ, GQ, and the matrix ΓQ are defined as

wQ(t) :=

 uQ
0 (t)
...

uQ
Q(t)

 ,

GQ(t) :=

 G0(t)
...

GQ(t)

 ,

ΓQ := diag (γ0, . . . , γQ) ,

and CQ is the matrix of general recursion coefficients Cn,k defined in (14).
Once we determine the system of approximate modal equations in (21) we can
analytically solve for the vector of approximate modes wQ or use a standard
ODE solver such as Matlab’s ode45 to solve for the approximate modes
numerically.

Remark 4.1. We emphasize that the matrices CQ and ΓQ depend only on
the choice of orthogonal polynomials (and thus on the distribution and shape
parameters describing the random variable). We have separated this from the
functional dependence of the forcing term on the random variable described
by GQ.

Example 4.1. As an example problem we shall solve an (IVP) that repre-
sents the case where the forcing function has a random parameter in the form
of a frequency {

u̇ + u = f(t, ω), t > 0
u(0) = 0

(22)

where the forcing function is f(t, ω) = cos(ωt). We assume the frequencies
ω are distributed uniformly in [0, π]. Note that this means ω belongs to the
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Beta distribution on [0, π] with zeros for the shape parameters a and b. Using
the bijection in (7) we transform to the variable ξ ∼ B(0, 0), so that ξ =
(2ω − π)/π and ω = π(ξ + 1)/2. This gives an IVP equivalent to (22){

u̇ + u = g(t, ξ), t > 0
u(0) = 0

(23)

where g(t, ξ) in (23) is defined as f(t, π(ξ + 1)/2). In order to obtain ap-
proximate modal equations we expand g as a Taylor series in the variable ξ
centered around the point ξ = 0 and truncate at Q to obtain

gQ(t, ξ) =

Q∑
k=0

1

k!

∂kg(t, ξ)

∂ξk

∣∣∣∣
ξ=0

ξk.

Comparing this to the standard form in (20), we see that

Gk(t) =
1

k!

∂kg(t, ξ)

∂ξk

∣∣∣∣
ξ=0

.

For the choice of g in this example we can compute the inner product exactly
to get g0(t) = sin(πt)/πt. We use this result as the right hand side in the
exact zeroth modal equation (18). Using the well-known integrating factor
method for linear first order ODEs we obtain an exact solution

u0(t) = e−t − e−t

∫ t

0

eτ sin(πτ)

πτ
dτ.

In fact, since each Gk is a trigonometric function in this example, we can
exactly solve each of the approximate modal equations given any Q. For com-
putational simplicity, we use ode15s with tolerance 10−12 in a short program
to test the accuracy of the approximations from the method above. Figure 2
shows how the approximation uQ

0 compares to the exact solution u0.

We now look at another example of the first order liner scalar IVP (15).

Example 4.2. This example is similar to the previous one but the forcing
function now has a random phase shift η uniformly distributed in [0, π]{

u̇ + u = f(t, η), t > 0
u(0) = 0

(24)
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Figure 2: Exact and approximate solutions for random frequency IVP

where the forcing function takes the form f(t, η) = cos(πt + η) and g(t, ξ) =
f(t, π(ξ + 1)/2). For this choice of forcing we compute g0(t) = −2 sin(πt)/π
and we can again solve the exact zeroth modal equation for u0. Figure 3 shows
that for this type of forcing function the convergence appears to be quite rapid
and to hold over large values of t.

Figure 4 below shows a plot of the L2 error ||uQ
0 −u0||L2 over the t interval

[0, 5] for examples 4.1 and 4.2 . We observe that the rate of convergence for
the approximation seems to better in the random phase shift example than
for the random frequency example.

This concludes the discussion of first order linear scalar ODEs with ran-
dom forcing. We now move on to consider analogous systems of ODEs.
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Figure 3: Exact and approximate solutions for random phase shift IVP

5 System of ODEs with Random Forcing

Let us now extend the method developed in the previous section for the single
scalar ODE with randomness in the forcing function to a system of ODEs
with randomness in the forcing function. The ideas presented here extend
in a natural way to a system of arbitrary size. We therefore only show the
structure for the case of a 2 × 2 matrix and we leave the generalization to
the larger systems as an exercise for the reader. We begin with the IVP{

ẇ + A(t)w = f(t, ξ), t > 0
w(0) = α

(25)
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where the vectors w, f , and α are

w =

[
u
v

]
,

f(t) =

[
f(t, ξ)
g(t, ξ)

]
,

α =

[
u(0)
v(0)

]
.

and where A is the following 2× 2 deterministic matrix

A(t) =

[
a(t) b(t)
c(t) d(t)

]
.
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We assume we can expand the functions u, v, f , and g using GPC. The or-
thogonality of the Jacobi polynomials leads to the following modal systems
of ODEs in time for each of the modes

u̇n(t) + a(t)un(t) + b(t)vn(t) = fn(t)

v̇n(t) + c(t)un(t) + d(t)vn(t) = gn(t). (26)

As discussed in the previous section, these modal systems have initial con-
ditions un(0) = u(0)δn,0 and vn(0) = v(0)δn,0. We assume here that the
elements of A, which form the coefficients in the system in (26) and the
modes fn and gn are all continuous on some common neighborhood of the
point t = 0 where the initial condition is given in (25). This allows us to use
standard existence and uniqueness theory to guarantee a solution to the nth
modal system in this neighborhood. The right hand side functions in (26)
are given as in (19) by

fn(t) =
〈f, ϕn〉

γ2
n

gn(t) =
〈g, ϕn〉

γ2
n

.

Note that each of the systems in (26) is decoupled in the sense that for each
n the system can be solved independently from systems for other values. The
matrix form of (26) is

ẏn + Ayn = Fn

where

yn :=

[
un(t)
vn(t)

]
,

Fn :=

[
fn(t)
gn(t)

]
.

If the integrals in the expressions for fn and gn above cannot be computed
exactly, they can be approximated by using numerical quadrature for exam-
ple or, when applicable, by techniques analogous to those developed in the
previous section, i.e., using expansions analogous to those in (20) and the
matrix CQ in (14) to compute approximations to the resulting integrals. The
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approximate modal system can then be solved for n = 0, 1, . . . , Q using a
standard ODE solver or analytically if possible.

This ends our exploration into ODEs with random forcing functions. We
now move on to consider systems of ODEs with randomness in the coeffi-
cients of the system. We first consider a system with a deterministic matrix
multiplied by a random variable ξA(t), which we then generalize an to affine
function of the random variable times a deterministic matrix (rξ + m)A(t).
Next we consider the case with a deterministic matrix multiplied by an arbi-
trary power of a random variable ξkA(t). Finally we consider the case where
the system involves a possibly nonlinear function of a random variable ξ and
a deterministic system matrix R(A(t), ξ).

6 System of ODEs with Linear Randomness

in the Coefficients

Thus far we have considered systems of ODEs where the randomness ap-
peared explicitly only in the right hand side forcing function. We now con-
sider systems with randomness in the coefficients on the left hand side. We
assume that the forcing function and the system matrix depend only on t,
i.e., that they are deterministic. We discuss the details for the case where
the system matrix is 2×2, which leads to an obvious generalization for larger
systems.

6.1 Systems with ξA(t) on the LHS

First we consider the IVP{
ẇ + ξA(t)w = f(t), t > 0

w(0) = α
(27)
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where w, f , α, and A are

w =

[
u
v

]
,

f(t) =

[
f(t)
g(t)

]
,

α =

[
u(0)
v(0)

]
,

A(t) =

[
a(t) b(t)
c(t) d(t)

]
. (28)

Writing (27) as a system gives

u̇ + aξu + bξv = f

v̇ + cξu + dξv = g. (29)

We expand u and v using GPC and truncate the expansions at Q. We then
proceed along the same lines as in the previous sections to use properties of
the system of orthogonal polynomials to generate a system of ODEs involv-
ing the modes of these expansions. After substituting the truncated GPC
expansion for u and v into (29), we multiply both equations by a general ϕm

where 0 ≤ m ≤ Q to get

Q∑
n=0

u̇nϕnϕm + a

Q∑
n=0

unξϕnϕm + b

Q∑
n=0

vnξϕnϕm = fϕm

Q∑
n=0

v̇nϕnϕm + c

Q∑
n=0

unξϕnϕm + d

Q∑
n=0

vnξϕnϕm = gϕm. (30)

Integrating the equations in (30) with respect to the random variable ξ and
rewriting the integrals as inner products gives

Q∑
n=0

u̇n〈ϕn, ϕm〉+ a

Q∑
n=0

un〈ξϕn, ϕm〉+ b

Q∑
n=0

vn〈ξϕn, ϕm〉 = 〈f, ϕm〉

Q∑
n=0

v̇n〈ϕn, ϕm〉+ c

Q∑
n=0

un〈ξϕn, ϕm〉+ d

Q∑
n=0

vn〈ξϕn, ϕm〉 = 〈g, ϕm〉. (31)
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Because f and g depend only on the variable t we have

〈f, ϕm〉 = 〈1, ϕm〉f = γ2
mδm,0f

〈g, ϕm〉 = 〈1, ϕm〉g = γ2
mδm,0g. (32)

In order to deal with the inner products 〈ξϕn, ϕm〉 in the summations in (31)
we apply Lemma 3.4 with k = 1, which gives

〈ξϕn, ϕm〉 = γ2
mC

(m−n)
n,1 . (33)

We substitute (32) and (33) into (31) and we divide both sides of the resulting
equations by the common factor γ2

m. This gives us the following

Q∑
n=0

u̇nδn,m + a

Q∑
n=0

unC
(m−n)
n,1 + b

Q∑
n=0

vnC
(m−n)
n,1 = δm,0f

Q∑
n=0

v̇nδn,m + c

Q∑
n=0

unC
(m−n)
n,1 + d

Q∑
n=0

vnC
(m−n)
n,1 = δm,0g.

Letting m = 0, 1, . . . , Q gives a 2(Q + 1) × 2(Q + 1) coupled system of
deterministic ODEs for the modes of u and v

ẏQ + (A⊗MQ)yQ = FQ (34)

where MQ = WQ,1 is the Jacobi matrix of basic recursion coefficients in (10),
⊗ is the Kronecker product, and

yQ :=



u0
...

uQ

v0
...

vQ


,

FQ(t) :=



f(t)
0
...
0

g(t)
0
...
0


. (35)
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The initial conditions for the modal system in (34) are un(0) = u(0)δn,0 and
vn(0) = v(0)δn,0.

We now wish to generalize the result in (34) to one for the case where we
have an affine function of the random variable multiplied by a deterministic
system matrix.

6.2 Systems with (rξ + m)A(t) on the LHS

We take advantage of the discussion above to state an approximate modal
system analogous to (34) for the following IVP involving an affine function
of the random variable rξ + m multiplied by a deterministic matrix A(t),
which may be viewed as a shifting and scaling of the random variable ξ as
mentioned in the Preliminaries section in (8){

ẇ + (rξ + m)A(t)w = f(t), t > 0
w(0) = α

(36)

where w, f , α, and A are as in (28). The result above in (34) gives the follow-
ing approximate modal systems corresponding to the intital value problem
in (36)

ẏQ + A⊗ (rMQ + mIQ)yQ = FQ. (37)

Where yQ and FQ are the same as in (35), IQ ∈ RQ+1×Q+1 is the identity
matrix, and the initial conditions are the same as those stated for (34). We
remark here that in modal system (37) we can clearly distinguish the roles
of the system in the matrix A, the distribution in the matrix MQ, and the
scaling and shifting in the parameters r and m.

Before moving on to state the main result for a system ODEs with a
nonlinear function of a random variable and a deterministic matrix we need
one more result.

6.3 Systems with ξkA(t) on the LHS

We now consider a system of ODEs with randomness in the coefficients of
the left hand side of the system in the form of a power of a random variable
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times a deterministic system matrix. We begin with the following IVP{
ẇ + ξkA(t)w = f(t), t > 0

w(0) = α
(38)

where w, f , α, and A are as in (28). Writing (38) as a system gives

u̇ + aξku + bξkv = f

v̇ + cξku + dξkv = g. (39)

Following the same approach as in the previous section gives an approximate
modal system analogous to that in (31), with ξk replacing ξ

Q∑
n=0

u̇n〈ϕn, ϕm〉+ a

Q∑
n=0

un〈ξkϕn, ϕm〉+ b

Q∑
n=0

vn〈ξkϕn, ϕm〉 = 〈f, ϕm〉

Q∑
n=0

v̇n〈ϕn, ϕm〉+ c

Q∑
n=0

un〈ξkϕn, ϕm〉+ d

Q∑
n=0

vn〈ξkϕn, ϕm〉 = 〈g, ϕm〉. (40)

The only new difficulty here is the appearance of the quantity 〈ξkϕn, ϕm〉 in
(40). Applying Lemma 3.4 gives

〈ξkϕn, ϕm〉 = γ2
mC

(m−n)
n,k . (41)

Substituting (32) and (41) into (40) and dividing by γ2
m gives

Q∑
n=0

u̇nδn,m + a

Q∑
n=0

unC
(m−n)
n,k + b

Q∑
n=0

vnC
(m−n)
n,k = δm,0f

Q∑
n=0

v̇nδn,m + c

Q∑
n=0

unC
(m−n)
n,k + d

Q∑
n=0

vnC
(m−n)
n,k = δm,0g.

Again letting m = 0, 1, . . . , Q gives the following modal system

ẏQ + (A⊗WQ,k)yQ = FQ. (42)

Where yQ and FQ are as in (35), WQ,k is the matrix of general recursion
coefficients in (12), and ⊗ is the Kronecker product. This deterministic
system of ODEs can be solved analytically or approximately with a standard
solver. Note that since MQ = WQ,1 we have (34) as a special case of (42)
with k = 1.
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6.4 Overall Qualitative Behavior

Consider the solutions to the approximate modal system from (37), which
approximate the solutions to the random system

ẇ + (rξ + m)A(t)w = f(t)

given in (36). We make some remarks here about how these approximations
compare qualitatively to solutions of the non-random system

ẇ + A(t)w = f(t).

From the theory of orthogonal polynomials we have that the eigenvalues of
the matrix of basic recursion coefficients MQ in (10) are the roots of the
Jacobi polynomial ϕQ+1. This polynomial has Q + 1 distinct real roots in
the interval [−1, 1], which means that if λ is an eigenvalue of MQ, then
λ ∈ [−1, 1]. Thus if we have m > r > 0, then rMQ + mIQ has Q + 1
distinct real eigenvalues in [m − r, m + r]. If we scale the random variable
ξ appropriately by r and m so that rMQ + mIQ has positive eigenvalues,
then by Theorem 3.5 we conclude that the signs of the eigenvalues of the
Kronecker product A⊗ (rMQ + mIQ) in the approximate modal systems in
(37) are the same as those of the matrix A. Furthermore, we can conclude
from Theorem 3.5 that if A has only real eigenvalues then A⊗ (rMQ + mIQ)
also has only real eigenvalues, and if A has only complex eigenvalues, then
A ⊗ (rMQ + mIQ) does as well. This qualitative analysis shows that that
the stability and overall behavior of solutions to the non-random system
are preserved in the approximations to u and v. We do note that multiple
oscillation modes can give the appearance of decaying amplitudes on small
time intervals, thus the short-time behavior of the random solution may be
somewhat different than that of the deterministic one.

We now move on to apply the results of this section to the more general
situation involving a possibly nonlinear function as part of the system.

7 System of ODEs with General Randomness

on LHS

We are now ready to state a method for approximating the solution to a
system of ODEs involving a possibly nonlinear function of a random variable
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ξ ∼ B(a, b) and a deterministic system matrix. We state results for the
case where the system matrix A is 2 × 2, A : [0,∞) → C2×2, and leave the
extension to larger systems for the reader.

Consider the following IVP{
ẇ + R(A(t), ξ)w = f(t), t > 0

w(0) = α
(43)

where the vectors w and f , and the matrix A are defined above in (28), and
where

R : C2×2 × [−1, 1] → C2×2 (44)

is a possibly nonlinear function. We assume that we can expand R as its
Taylor series in the random variable ξ about the point ξ = 0, which we
truncate at N to get

RN(t, ξ) :=
N∑

k=0

Ak(t)ξ
k (45)

where Ak : [0,∞) → C2×2 for k = 0, 1, . . . , N are the Taylor coefficients of
the expansion of R. This assumption leads to the following coupled system of
deterministic ODEs for the approximate modes of u and v, which is analogous
to that in (42)

ẏQ +

(
N∑

k=0

Ak(t)⊗WQ,k

)
yQ = FQ. (46)

By solving the system in (46) we obtain approximations for the modes
u0, . . . , uQ and v0, . . . , vQ. We note here that we do not directly address
the case when expansions of the form given in (45) cannot be used nor do we
discuss issues of convergence of such expansions. For a discussion of these
issues we refer the reader to [5].

We conclude this section with an example of the ideas presented above
in which we find approximate solutions to the predator-prey model with
randomness in the coefficients of the system.
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Example 7.1. We consider the linearized homogeneous predator-prey model
used to model the change from equilibrium of coexisting populations of a prey
species u and a predator species v. The model is given by the following IVP

[
u̇
v̇

]
+

[
0 −b
c 0

] [
u
v

]
=

[
0
0

]
, t > 0

[
u(0)
v(0)

]
=

[
α
β

] (47)

where the constants b and c in the coefficient matrix of the system are both
positive, and α and β are given initial values for u and v respectively. We
introduce random noise into the system in (47) through multiplication of a
shifted and scaled random variable to get the following[

u̇
v̇

]
+ (rξ + m)

[
0 −b
c 0

] [
u
v

]
=

[
0
0

]
.

This is a problem of the type (36) that was discussed in the previous section.
Applying the method developed there gives the following system of approxi-
mate modal equations

ẏQ + A⊗ (rMQ + mIQ)yQ = 0

where

A =

[
0 −b
c 0

]
,

0 =

[
0
0

]
We take r = 0.01, m = 1, ξ ∼ B(0, 0), α = β = 100, and let b = 0.5 = c.

Solving the resulting system gives approximations for the modes of u and
v. Figure 5 shows a plot of uQ

0 for Q = 4 with confidence envelopes for
the expected value of the prey species, showing plus or minus one standard
deviation using the formula for variance in (6). Figure 6 displays a similar
plot for the predator species.
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0 and confidence envelopes for the random predator-prey model

For comparison, we solve the non-random predator-prey system and find
the deterministic solutions u and v. These solutions are plotted in Figure
7. We see that because the matrix A has complex eigenvalues, the system
exhibits stable oscillations and the species continue to coexist over time.

Figures 5 and 6 seem to indicate that the addition of random noise to
the system in this case results in a change in the qualitative behavior of
our approximate solutions, since the populations of both species seem to be
decaying to a fixed value over time. Figure 8 shows this over a longer period
of time. We argue that this is merely caused by the presence of multiple
modes and that further time integration would show the amplitude returning
to the initial level.
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8 Conclusions and Future Work

In our work here we have developed methods for solving models with ODEs
involving random parameters in the forcing function and in the coefficients
of the system. The main tool that we have used in this development has
been the Generalized Polynomial Chaos (GPC) approach, which begins with
an expansion of the functions in the ODEs and leads to systems of determin-
istic ODEs for the modes of these expansions. By using this approach one
can incorporate uncertainty in a mathematical model by modeling uncertain
parameters with random variables and proceed to solve the resulting deter-
ministic systems for the expansion modes and obtain approximate solutions
to the model.
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Figure 7: Solutions to the non-random predator-prey models

Future research possibilities related to the ideas covered in this paper
include extensions to Partial Differential Equations (PDEs) involving random
parameters. This would include using the Finite Element Method or the
Method of Lines approach to solving elliptic Boundary Value Problems with
a random parameter. We also hope to connect our work here with other
research in numerical solutions to Maxwell’s system of PDEs in Debye media.
In particular, we wish to apply the methods developed in the current paper
to the systems of ODEs that arise in the application of the Yee scheme to
Maxwell’s equations.
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